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ABSTRACT 

A dynamic and extremely complex landscape in security and world events 

presents problems that challenge all sectors of society to develop efficient means for 

exploring a wide range of solutions.  Similarly, exponential increases in technological 

capability make it difficult for commercial and governmental leaders to assess those 

proposed solutions.  Computer experimentation is an established method for examining 

complex models with large numbers of factors.  Orthogonal and nearly orthogonal Latin 

hypercubes are proven techniques for designing simulation experiments.  A key property 

of these efficient, space-filling designs is their ability to explore many factors within a 

relatively modest number of design points; however, there is a limited inventory of these 

designs currently available.  Those that have been catalogued are usually computationally 

expensive to produce and have severe restrictions in the number of factors and/or runs 

that they allow.  To remedy this, we present a set of flexible methodologies to create 

design matrices with little or no correlation—including saturated nearly orthogonal Latin 

hypercubes.  This new family of designs can explore as many factors as there are design 

points.  This research also addresses experiments that include a mixture of continuous 

and integer variables, some of which have different numbers of value levels. 
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EXECUTIVE SUMMARY 

Experiments using computer models are of great importance to scientific research, 

national defense, and public policy debates.  This follows from continual improvements 

in computational power against a backdrop of rising costs and other challenges frequently 

associated with physical experimentation.  Moreover, often it is not practical to conduct 

many, or even any, physical experiments—e.g., the long-term effects of various policies 

on global climate, emergency response to large-scale nuclear accidents, potential major 

military conflicts, etc.  In situations with a dearth of real-world experimental data, 

computer models are frequently used to help understand these complex issues. 

Computer experimentation in the above areas may contain thousands of input 

variables and/or take a long time (e.g., many days) to run (Kleijnen et al., 2005).  

Researchers have several techniques to effectively extract information from these models.  

Among them are designs of experiments that are specifically developed for efficiently 

exploring high-dimensional computer models. 

Latin hypercube (LH) sampling (McKay et al., 1979) has proven to be an 

invaluable design technique.  In fact, LHs are reported to be the predominant design for 

experiments involving computer simulations (Buyske & Trout, 2001).  A key reason for 

this is that they come with minimal restrictions on the number of factors (i.e., input 

variables) and sampling budget.  In addition, the resultant output data allow us to fit 

many different models to multiple outputs from a single experimental set.  These designs 

permit us to simultaneously screen many factors for significance and to fit very complex 

meta-models (including nonparametric) to a handful of dominant variables.  This 

flexibility extends to visual investigations of the data (Sanchez & Lucas, 2002), as we get 

many viewpoints from which to observe the relationships between inputs and outputs. 

There are a large number of LHs for any given experimental condition, by which 

we mean the number of design points (n) and variables (k).  A design point is a unique 

combination of the values of the input variables. Some LH designs possess better 

properties than others.  For example, LHs can have unacceptable correlations among the 

input factors, thus hindering many statistical procedures that we might wish to apply in 



 xx

analyzing the relationships between inputs and outputs.  To mitigate this problem, various 

researchers (e.g., Owen, 1994; Ye, 1998; Cioppa, 2002; Ang, 2006; and Steinberg & Lin, 

2006) have developed algorithms to eliminate or significantly reduce correlations among 

input variables—thereby developing orthogonal and nearly orthogonal Latin hypercubes 

(OLH, NOLH).  A design is nearly orthogonal if the maximum absolute pairwise 

correlation ( mapρ ) among the columns of the design matrix is ≤ .05. 

The success of these recent efforts to create OLH and NOLH designs is extensive, 

but all of these approaches are subject to stringent constraints in their dimensionality, 

usually requiring that n be a power of two or a power of two plus one.  Steinberg and Lin 

(2006) state, “[t]he primary limitation to our method is the severe sample size constraint.”  

For instance, to explore 12 factors Steinberg and Lin require only 16 runs.  To explore 13 

factors, they require a design with 64 runs. 

This dissertation details an algorithm for generating NOLHs for a greatly 

expanded set of n and k, including situations where k = n – 1, i.e., fully saturated designs, 

as well as methodologies that expand on the usage of LHs to include accommodating 

discrete variables into nearly orthogonal designs.  We further specify the conditions 

under which these approaches are appropriate.  Our research goals are listed below. 

• Provide analysts the ability to apply uncorrected LH designs to a number 
of situations in which scientists do not have the advantage of developing 
OLH or NOLH designs, or may not wish to use OLH or NOLH designs. 

• Provide analysts the ability to generate OLH and NOLH designs for many 
more combinations of n and k than previous approaches allowed—with a 
particular emphasis on maximizing k for any given n. 

• Provide analysts the ability to incorporate different factor types (discrete 
and continuous) with different value levels (mixed factor, mixed level) 
into a nearly orthogonal design matrix. 

• Provide analysts the ability to quickly generate new, robust, special 
purpose designs to meet new and changing design requirements. 

To meet these goals, we quantify when random Latin hypercubes (RLHs) are acceptable 

and develop a number of progressive techniques to construct and use NOLHs. 

Tools and methods, based on the maximum absolute pairwise correlation, help 

select an appropriate dimension for the experimental design and obtain an uncorrected 
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RLH with a suitable mapρ .  Astute selection of a design dimension (n = sample runs,  

k = factors) will often allow an experimenter to quickly generate a useful design.  We 

present a procedure that systematically directs the selection of an appropriate design 

dimension and provides guidance for accepting an uncorrected RLH, as RLH designs are 

commonly used by practitioners.  This includes a parsimonious function that relates the 

expected maximum absolute pairwise correlation to transformed values of n and k.  This 

method requires no specialized algorithms or software packages, making it applicable in 

most situations and an attractive option for experimenters with limited resources. 

 We expand the application of Florian’s method (1992) to produce new OLH and 

NOLH designs.  Our studies reveal that iterative application of Florian’s method can be 

extremely powerful.  We demonstrate that the number of candidate designs needed is 

often much less than 1,000 for even large experiments.  When 50n ≥  and 
3
nk ≤ , 

Florian’s method is usually sufficient to transform one randomly generated LH to meet 

our NOLH criteria.  Even if we break these loose constraints, we often construct NOLHs. 

 We use optimization techniques to construct OLH and NOLH designs for 

dimensions beyond what Florian’s method allows.  Optimization presents difficulties for 

solving the experimental design problem because our objective function is nonlinear and 

we have integer constraints.  As n and k increase, the dimensionality of LHs adds to the 

challenges.  Therefore, we develop a construction methodology based on a focused 

optimization routine that greatly expands the set of n and k for which orthogonal and 

nearly orthogonal designs are available.  Specifically, we combine RLH generation, 

Florian’s correlation reduction method, and optimization of a mixed integer problem—

using a heuristic that focuses on one column at a time—to minimize mapρ  for a specified 

n and k.  By minimizing the worst-case correlation, we control all other pairwise 

correlations.  To best illustrate the power of this new methodology, we concentrate on 

design dimensions that are absent from existing catalogues and ones that are the most 

difficult to generate with previous methods; that is, experiments with 50n ≤  as k 

approaches n. 
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Our results show significant improvements over the efficiency of past 

experimental designs for the same number of runs.  Table 1 compares our new technique 

with other recent methods to create orthogonal or nearly orthogonal Latin hypercube 

designs.  For a given n, our methods produce designs that can explore many more factors. 

Table 1.   A comparison of recent construction methods to generate OLH or NOLH 
designs shows that our new method significantly increases the number of factors, 

k, that may be examined for the same number of runs, n. 

Maximum k for Each Method 
n Ye Cioppa Ang Steinberg 

and Lin* New 

17 6 7 8 12 16 
33  8 11 16 NA 32 
65  10 16 32 56     63** 

*   Steinberg and Lin’s method uses n – 1 runs. 
** New design uses 64 runs. 

In addition to increasing the number of NOLHs, we exploit the flexibility of our 

new designs to develop an approach that handles mixed-factor, mixed-level (MFML) 

experiments.  In accordance with LH sampling construct (McKay et al., 1979), OLH and 

NOLH designs assume that all variables are continuous.  In practice, this assumption is 

frequently false.  Many experiments include a number of discrete variables (that do not 

necessarily have the same number of value levels), along with continuous factors.  We 

designate these as MFML experiments. 

MFML experiments can diminish the advantages of OLH and NOLH designs.  

Converting (by rounding) the actual values of these discrete variables onto a raw OLH or 

NOLH design, especially when there are a small number of runs, often results in an 

overall design with high correlations among input variables.  To remedy the problems 

that MFML experiments present scientists, we exploit the dimensional flexibility of our 

new designs by combining them with stacking methods.  We also combine our method 

with proven design techniques.  The resulting MFML designs retain much of the 

orthogonality properties of the basic NOLH, thereby maintaining their utility. 

The principal shortfall of previous methods to develop OLH and NOLH designs is 

their strict limitations in dimensionality.  Our new techniques and procedures overcome 
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many of these restrictions, thereby enabling scientists and analysts to apply these 

powerful designs in more situations. 
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I. INTRODUCTION 

Latin hypercubes (LHs) have proven to be a powerful tool for conducting  

high-dimensional computational experiments in many of the sciences and national 

security studies.  Our research expands the set of orthogonal Latin hypercube (OLH) and 

nearly orthogonal Latin hypercube (NOLH) designs available to those involved in 

experimentation.  We accomplish this by greatly increasing the feasible combinations of 

design points1 (n) and factors2 (k) that are available for experimentation—which 

heretofore have been highly constrained.  Furthermore, we offer methods to create nearly 

orthogonal designs when some of the input variables are discrete—perhaps with a large 

number of possible values.  Moreover, our work provides a descriptive study of the 

correlation structures inherent in random and specially constructed LHs.  The culmination 

of this dissertation provides the first high-dimensional, fully saturated NOLHs. 

A. CHALLENGES IN EXPERIMENTAL DESIGNS FOR SIMULATIONS 

Experimentation is fundamental to knowledge acquisition.  Unfortunately, 

physical experimentation is often infeasible due to safety, money, time, or resource 

constraints.  Consequently, experimenters often turn to computational experimentation, 

such as computer simulation, of the system of interest.  The ability of computers to 

simulate increasingly complex problems provides analysts greater potential to assist 

decision makers, such as those in the Department of Defense (DoD).  Network-centric 

warfare and irregular warfare are but two of the areas that involve vast numbers of 

quantitative and qualitative variables.  Often these simulations contain hundreds, or even 

many thousands, of input variables (Saeger & Hinch, 2001).  The commercial world and 

natural scientists face similar dilemmas.  Studies in human behavior and biomimetics 

often use computer simulations and rely on efficient designs of experiments (DOEs), 

                                                 
1 A design point is a unique combination of the values of the factors.  We use the terms design point 

and run interchangeably. 
2 Factors are input variables whose settings or values can be controlled by the experimenter.  We use 

the terms factor and variable interchangeably. 
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adopting any technique that allows analysts to “systematically examine a broader range 

of possible innovations . . .” (Booker, 2005). 

Researchers implement a number of methodologies to extract the most useful 

information from simulations.  Among these methods are experimental designs 

specifically developed for efficiently exploring computer models (Kleijnen et al., 2005).  

The design specifies the inputs for the experiments.  In particular, given that n 

experiments are to be conducted over k input variables, the DOE is usually specified by 

an n × k design matrix X.  Each column of X represents an input variable and each row 

specifies the input variable values for a single design points (see Table 2). 

Table 2.   An example design matrix for three factors (i.e., k = 3) and  
eight experiments (i.e., n = 8). 

Design
Point Factor1 Factor2 Factor3

1 1 0.5 0 
2 1 0.5 10 
3 1 1.5 0 
4 1 1.5 10 
5 0 0.5 0 
6 0 0.5 10 
7 0 1.5 0 
8 0 1.5 10 

The information that is obtainable by analyzing the data after conducting the 

experiments depends critically on the design.  For example, if a quantitative input 

variable only has two distinct values, then the expected response cannot be modeled as a 

quadratic in that variable.  If we know in advance what metamodels we want to fit to 

describe the response surface of the simulation model (Law & Kelton, 2003), and the 

error structure of the experiments, then an optimal design may exist (Fedorov, 1972).  

However, in many cases, especially when conducting exploratory analysis, we desire 

designs that “allow one to fit a variety of models” (Santner et al., 2003).  For such 

situations, LH sampling (McKay et al., 1979) has proven to be an invaluable technique 

for designing high-dimensional computer experiments.  For the past 15 years it has 

become an “important part of uncertainty analyses” (Wyss & Jorgensen, 1998).  Under 
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general conditions, LH designs perform exceptionally well in comparison to other 

popular experimental design options (Johnson, 2008).  In fact, LHs are purported to be 

the predominant DOEs involving computer simulations (Buyske & Trout, 2001). 

LHs are popular designs for simulation exploration because of their design and 

analytical flexibility (Lucas & Sanchez, 2006a).  An LH design can easily be constructed 

for any number of continuous input variables (k) and sampling budget (n) as long as  

k  ≤ n.  Indeed, many simulation software packages, even spreadsheet simulation add-ons, 

can generate LHs (Sugiyama & Chow, 1997).  With sufficiently large n, the output data 

can be fit to a wide variety of metamodels (from simple to complex) for many different 

responses.  In particular, LHs enable us to simultaneously screen many factors for 

significance and fit very complex metamodels to a modest number of critical variables.  

Moreover, LHs have good space-filling properties, i.e., they are good at providing 

“information about all portions of the experimental region” (Santner et al., 2003). 

The existence of desirable properties in LH designs, which correspond with their 

degree of utility, is dependent on the absence of correlation among the columns of the 

design matrix.  Many analytical techniques that experimenters apply to computer 

outputs—such as regression modeling and partition trees—suffer when there is 

multicollinearity among the input variables (Montgomery et al., 2001 and Kim & Loh, 

2003).  Consequently, analysts usually desire a design matrix with a correlation structure 

that is close to that of the identity matrix (Iman & Conover, 1982, and Iman & 

Davenport, 1982).  Unfortunately, generating LH designs involves an inherent 

randomness in the construction of the columns—a random permutation of the value 

levels, 1 through n.  This construction method invites the possibility of substantial 

multicollinearity among the columns of the design matrix, especially when n is not 

substantially larger than k. 

To mitigate the difficulties that can be caused by correlations among the columns 

in the design matrix, a succession of methods have been developed that reduce or even 

eliminate the correlations.  An LH is called an orthogonal Latin hypercube (OLH) if the 

correlation coefficient between all pairs of columns in the design matrix is zero.  We will 

denote an OLH with k variables in n runs as n
kO .  In some situations, an OLH may not be 
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available or it may come with poor space-filling properties (Cioppa & Lucas, 2007).  In 

such a situation, a nearly orthogonal Latin hypercube (NOLH) may exist and be 

preferred.  We will define NOLHs precisely later in this section.  An NOLH with k 

variables in n runs is denoted as n
kN .  The absence or near absence of correlations among 

their design columns makes OLH and NOLH designs attractive.  However, there are only 

a small number of these catalogued designs available and most applications do not use an 

OLH or NOLH design. 

A variety of reasons exist for why OLH and NOLH designs are not used more 

often than they currently are.  Efforts to reduce or eliminate correlation are often 

computationally expensive and time consuming (Cioppa, 2002).  The complexity of 

algorithms involved in creating them typically requires specialized software and 

programming (Iman & Conover, 1982).  Most detrimental for increasing the use of OLH 

and NOLH designs are the severe restrictions on the dimensionality of the design matrix 

(and hence, experiment).  In every case, the dimensions of new designs restrict n to be a 

function of a power of 2, or a power of 2 plus 1.  Furthermore, methods for creating LH 

designs assume continuous variables, which necessitate rounding off the raw design 

values to accommodate discrete variables.  The resulting design values do not typically 

retain the orthogonality (or near orthogonality) properties of the raw design. 

This dissertation overcomes the above obstacles and greatly expands the set of 

readily available OLH and NOLH designs.  It presents new construction methods, and 

augments previous techniques, to generate design matrices (X) with little or no 

correlation.  While LH designs assume continuous variables, our work also encompasses 

discrete variables that may have unequal numbers of levels.  The resulting design 

matrices fill substantial gaps in the current library of OLH and NOLH designs. 

B. RANDOM LATIN HYPERCUBES AND INHERENT CORRELATION 

The foundation of our work resides in the characteristics of the random Latin 

hypercube (RLH).  We briefly describe the nature of the RLH as a reference for defining 

the terminology we use in this dissertation and setting the context for our enhancements. 
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1. Random Latin Hypercube Generation 

 RLH generation is so named to emphasize the randomness in its construction.  

Generating an RLH is relatively simple.  Consider an n by k matrix, X.  Owen (1994) 

describes the ith element in the jth column, j
iX , of an LH as 

( )1
( )

,  for 1,...,  and 1,...j ijj
i j

i U
X F i n j k

n
π

−
⎛ ⎞−
⎜ ⎟= = =
⎜ ⎟
⎝ ⎠

, where (1),..., ( )j j nπ π  is one of the 

!n  possible random permutations of 1,…, n in which all !n  permutations are equally 

likely.  The jF , j = 1, …k are continuous and invertible distribution functions.  Finally, 

the ijU , i = 1,…, n, j = 1, …k are independent and identically distributed uniform [0, 1]  

random variables. 

Similar to Owen (1994), Ye (1998), Cioppa (2002), and Steinberg and Lin (2006), 

we use a lattice version of the LH (Patterson, 1954) and assume that jF  is the distribution 

function of a uniform [0, 1] for i = 1,…, n, j = 1,…k.  We further replace the uniform 

random variable, ijU , with 0.5, the median of a uniform [0, 1] distribution; thus creating a 

center point in each stratum.  Therefore, generating an RLH reduces to independently 

generating k columns, each a permutation of the integers i = 1,…, n, where the !n  

permutations are equally likely.  For a given column, j = 1, 2,…, k, this yields:  

( )( ) .5
,  for 1,...,jj

i

i
X i n

n
π −

= = .  The columns of the resulting design matrix, jX , for  

j = 1, ,…, k,  are k independent permutations of the vector x, which contains elements 

derived from the following simplified formula (Owen, 1994): ( ).5
,  for 1,...,  i

i
x i n

n
−

= = . 

We illustrate this method by examining three factors (k = 3) with four sample runs 

(n = 4).  The experimenter calculates the first element, i = 1, from the simplified formula 

.5 1 .5 1/ 2 1
4 4 8

i
n
− −

= = = .  Computation of the remaining elements, for i = 2, 3, and 4, 

results in the vector 1 3 5 7, , ,
8 8 8 8

x ⎛ ⎞= ⎜ ⎟
⎝ ⎠

.  A random permutation of x  for each column 

produces a lattice LH for three factors and four design points, as shown in Figure 1. 
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3 1 5
8 8 8
5 3 7
8 8 8
7 5 1
8 8 8
1 7 3
8 8 8

X

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟

= ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

. 

Figure 1.   Three permutations of the vector x  results in an RLH design for three 
variables and four sample design points using Owens’ simplified formula to 
create a lattice LH. 

The columns in X are often translated and scaled for a particular application.  For 

a given column, the values are equally spaced between the minimum and maximum 

values allowable for the corresponding variable.  Given this lattice construction, a total of 

(n!) permutations are possible for each column.  This does not create (n!)k  unique LHs 

because some designs can be mapped to others by permuting rows and columns.  

However, the total number of unique designs is astronomically large.  For example, there 

are over 87 billion unique designs with k=2 and n=14. 

The simplicity and flexibility of this sampling scheme has a price.  It is precisely 

the randomness of column generation that opens the possibility for strong 

multicollinearity among the columns of the design matrix. 

2. Measure of Nonorthogonality for Design Selection 

Along with Tang (1998), we recognize that selecting a design based on the 

correlations between the columns of the design matrix is a reasonable way to obtain a 

design with acceptable nonorthogonality.  Cioppa (2002) specifically uses the maximum 

absolute pairwise correlation between columns of an LH to obtain OLH and  

NOLH designs. 

Following Cioppa, we designate the maximum absolute pairwise correlation 

( mapρ ) as the key measure for discriminating between designs.  There are 
2
k⎛ ⎞
⎜ ⎟
⎝ ⎠

 pairwise 

correlations in a design with k variables.  Computation of the correlation coefficient 
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between any two vector columns in design matrix X is straightforward.  Using Pearson’s 

equation, the correlation between iX  and jX  is given by 

1

2 2

1 1

[( )( )]

( ) ( )

n
i i j j
b b

b
ij n n

i i j j
b b

b b

x x x x

x x x x
ρ =

= =

− −
=

− −

∑

∑ ∑
, 

where ix and jx  are the mean values of the ith and jth columns and i
bx  is the bth value of 

the ith column. 

The largest absolute correlation among the columns gives the most extreme 

pairwise correlation.  We use this value to define the degree of nonorthogonality of a 

design.  By minimizing the worst-case pairwise correlation, we control all other pairwise 

correlations.  Hence, we focus attention on mapρ  throughout our study and creation of 

new OLH and NOLH designs.  Specifically, 

{ }max   map iji j
ρ ρ

≠
= . 

Our collection of techniques minimizes mapρ .  We further use mapρ  as a guide for 

combining reliable design approaches with our new designs, thereby expanding the utility 

of OLH and NOLH. 

The role of mapρ  in our study is evident in the large values in which it appears in 

RLHs, especially when k is not too much smaller than n.  Consider the design matrix in 

Figure 2.  Three new permutations of vector x result in this design matrix, where columns 

2 and 3 have a correlation value of –1, i.e., 1mapρ = . 

3 1 7
8 8 8
5 3 5
8 8 8
7 5 3
8 8 8
1 7 1
8 8 8

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

. 

Figure 2.   In this RLH, columns two and three give 23 1mapρ ρ= = . 
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In a sampling method in which all possible RLH designs are equally probable 

(Satterthwaite, 1959), the probability that a highly correlated design occurs is high.  To 

illustrate, we randomly generate 1,000 4 × 3 RLH designs and measure the mapρ  of each.  

Over 77% of the designs have a 0.80mapρ ≥ , with nearly 25% having 1mapρ = .  Clearly, 

the possibility of incurring high correlations in an RLH can be problematic. 

Whereas randomness creates a concern of possible high correlations among the 

columns in the design matrix, it may also result in RLH designs that have very small 

correlations.  This observation offers an opportunity to develop a systematic process for 

selecting suitable RLH designs and applying a variety of transformation and generation 

techniques to minimize their nonorthogonality.  In doing so, possibilities to reduce 

restrictions in dimensionality also emerge. 

C. A PROGRESSION OF OLH AND NOLH CONSTRUCTION METHODS 

 Techniques to create new OLH and NOLH designs have produced incremental 

increases in feasible n and k combinations.  A succession of studies extends the 

foundational paper by McKay et al. (1979) to produce methods that can reduce the 

correlations of a given LH design.  Iman and Conover (1982) induce rank correlation in 

the design to correspond with the correlation that one would expect from the input 

variables, resulting in a means to control the correlation of the design matrix.  Similar to 

Iman and Conover (1982), Florian (1992) updates LH sampling designs through matrix 

transformation.  Owen (1994) introduces a process based on Gram-Schmidt 

orthogonalization to control correlations among variables.  These methods attempt to 

convert LH designs to correspond with correlation matrices that approach the identity 

matrix.  They do not guarantee the complete elimination of correlation from the design, 

although uncorrelated designs are achieved in some cases. 

A relatively recent wave of techniques completely eliminates correlation among 

the columns of an LH design during its construction.  Ye (1998) introduces a class of 

LHs with no correlation among its columns and designated them OLHs.  Ye finds that it 

is possible to develop OLH designs when the number of runs, n, is a power of 2 plus 1.  

Through Ye’s method, experimenters can generate an orthogonal design ( 0mapρ =  and 
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condition number = 1)3 with k = 2m – 2 for an experiment with n = 2m + 1 runs, where m 

is a positive integer.  Each column in the design uses a permutation matrix that is based 

on the Kronecker product (Graham, 1981) of identity matrices and a transposition matrix.  

Ye uses all m of his main permutation matrices and m – 2 permutation matrices from the 

1
2

m −⎛ ⎞
⎜ ⎟
⎝ ⎠

 possible pairwise multiplications of the main permutation matrices.  Ye (1998) 

understands that the sizes of his OLH designs are somewhat inflexible, but asserts that 

computer power mitigates this disadvantage. 

Cioppa (2002) extends Ye’s method for constructing OLH designs by increasing 

the number of permutation matrices that generate mutually orthogonal columns.  Instead 

of using m – 2 of the pairwise combinations, Cioppa uses all 
1

2
m −⎛ ⎞
⎜ ⎟
⎝ ⎠

 pairwise matrix 

multiplication combinations.  In so doing, Cioppa increases the number of columns (k) in 

the design matrix from 2m – 2 to m +
1

2
m −⎛ ⎞
⎜ ⎟
⎝ ⎠

, while maintaining their full orthogonality 

for the same number of runs. 

Cioppa, however, notices that this approach can yield an OLH that does not have 

good space-filling properties.  Hence, Cioppa develops a computationally intensive 

algorithm that improves on the space-filling properties of Ye’s designs by accepting a 

small amount of nonorthogonality.  Cioppa selectively catalogues designs with  

space-filling qualities that are better than Ye’s designs, in terms of the modified L2 

discrepancy (ML2) and Euclidean maximin (Mm) measures.  The amount of 

nonorthogonality that Cioppa accepts in terms of mapρ  is at most 0.03 and X must also 

have a condition number less than 1.13 (when the columns of X are scaled to span the 

interval [–1,1]).  We recall that an OLH has mapρ  equal to 0 and condition number equal 

to 1.  The slight nonorthogonality of the design earns its name as an NOLH.  Cioppa 

demonstrates that his method works for up to k = 67 and conjectures that for any positive 

                                                 
3 The condition number is the ratio of the largest to smallest eigenvalues of X’X, where X is the  

n x k design matrix (Cioppa & Lucas, 2007).  The condition number represents the design matrix’s 
sensitivity to small changes in its values (Leon, 2002). 
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integer value of m, an NOLH design can be constructed whenever n = 2m + 1 and  

k = m +
1

2
m −⎛ ⎞
⎜ ⎟
⎝ ⎠

.  Existing space-filling NOLH designs from Cioppa’s method are 

catalogued for up to 29 factors within 257 runs. 

Ang (2006) augments Cioppa’s methodologies to create larger OLH and NOLH 

dimensions.  While Cioppa uses all 
1

2
m −⎛ ⎞
⎜ ⎟
⎝ ⎠

 pairwise matrix multiplication combinations, 

Ang uses all three-way, and larger, product combinations to create new permutation 

matrices.  Each new permutation matrix generates a new column in the OLH design.  The 

number of factors that Ang’s designs can explore is 
1

1
1

p

j

m
k

j=

−⎛ ⎞
= + ⎜ ⎟

⎝ ⎠
∑ , where p (with the 

maximum 1p m= − ) is the p-way combinations used for developing the permutation 

matrices and m is a positive integer.  The number of runs required to explore k factors is 

still n = 2m + 1.  For instance, a design with m = 5 can explore k = 16 factors when using 

the maximum (p = 4) combinations.  Such a design requires n = 25 + 1 = 33 runs.  This 

technique results in designs that can explore more factors with the same number of runs.  

These designs begin to approach a certain saturation level, with a noted decrease in their 

space-filling properties as p increases.  Additionally, Ang (2006) redefines the NOLH 

criteria as 0.05mapρ ≤  and a condition number of no more than 1.20.  We use these 

thresholds for our new methodologies, with a particular emphasis on minimizing mapρ . 

Steinberg and Lin (2006) rotate two-level factorial designs to construct OLHs for 

n = 2h, with h a power of 2, and the maximum number of factors being Bh×h, where  

Bh = ⎥⎦
⎥

⎢⎣
⎢ −

h
n 1 , with ⎣ ⎦c  = the maximum integer less than or equal to c.  For instance, for  

n = 16 runs, h = 4 and Bh = 3, so a 16
12O  is possible.  We note that these OLHs do not 

include a center point, as do previously discussed OLHs. 

The success that these recent efforts have had in creating OLH and NOLH 

designs is extensive, but OLH and NOLH designs are still subject to stringent constraints 

in their dimensionality.  As Steinberg and Lin (2006) state, “[t]he primary limitation to 
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our method is the severe sample size constraint.”  We see that to explore 12 factors with 

their algorithm requires only 16 runs.  To explore 13 factors, Steinberg and Lin require a 

design with 64 runs.  In comparison, Ang (2006) needs 33 runs to explore up to 16 

factors.  However, to explore 17 factors, Ang must increase the number of runs to 65.  

Table 3 compares our new method with recent methods to create orthogonal or nearly 

orthogonal designs. 

Table 3.   A comparison of recent construction methods to generate OLH or NOLH 
designs shows that our new method significantly increases the number of factors, 

k, that may be examined for the same number of runs, n. 

Maximum k for Each Method 
n Ye Cioppa Ang Steinberg  

and Lin* New 

17 6 7 8 12 16 
33  8 11 16 None 32 
65  10 16 32 56     63** 

*   Steinberg and Lin’s method uses n – 1 runs. 
** New design uses 64 runs. 

All existing OLH techniques have a common inflexibility in dimensionality.  Our 

new approach constructs flexible NOLH designs—that is, sample sizes need not be 

related to a power of 2 (any n is allowable) and many feasible k (often all k = 1, …n – 1) 

are possible.  Indeed, in many cases, we create fully saturated designs that are orthogonal 

or nearly orthogonal.  Furthermore, the flexibility of our OLH and NOLH designs make it 

possible to combine them with other methods to create experimental designs that include 

discrete variables. 

D. DISSERTATION ORGANIZATION 

The flow of this dissertation is a progression of techniques and procedures that we 

build to meet our research goals.  The resulting tools and products greatly expand our 

ability to explore broad regions of a complex simulation model containing a  

high-dimensional input space, characterized by a response surface that may be highly 

nonlinear.  We introduce several methodologies that enable analysts to use OLHs and 

NOLHs in more situations.  Furthermore, we specify the conditions under which the 
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various approaches are appropriate.  We also develop algorithms for accommodating 

discrete variables into nearly orthogonal designs.  Our research goals are listed below. 

• Provide analysts the ability to apply uncorrected LH designs to a number 
of situations in which scientists do not have the advantage of developing 
OLH or NOLH designs, or may not wish to use OLH or NOLH designs. 

• Provide analysts the ability to generate OLH and NOLH designs for many 
more combinations of n and k than previous approaches allowed—with a 
particular emphasis on maximizing k for any given n. 

• Provide analysts the ability to incorporate different factor types (discrete 
and continuous) with different value levels (mixed factor, mixed level) 
into a nearly orthogonal design matrix. 

• Provide analysts the ability to quickly generate new, robust, special 
purpose designs to meet new and changing design requirements. 

The following four chapters each describe techniques to reach our study goals.  

Chapter II discusses RLHs more thoroughly, to provide the reader with a better 

understanding of their utility and to build a foundation for other techniques.  It contains 

the mathematical theory underlying our designs and the details necessary to construct 

them.  We discuss mapρ  as the nonorthogonality measure that is our focal point for all 

design techniques.  We create tools based on mapρ  to select dimensions for an RLH 

design that has a very good chance of possessing an acceptable nonorthogonality 

measure.  Chapter III quantifies the effectiveness of Florian’s (1992) correlation 

reduction method, as well as its limitations, for producing OLH and NOLH designs.  

Florian’s method is an earlier technique that has great utility in constructing a number of 

nearly orthogonal designs that do not conform to previous restrictions in their 

dimensions.  Chapter IV contains a combined application of RLH generation, Florian’s 

(1992) method, and mixed integer programming (MIP) to produce new OLH and NOLH 

designs that greatly expand on what was previously available.  The difficulty in using 

optimization to solve combinatorial problems, such as DOEs, prevents scientists from 

pursuing it as a practical solution method.  We formulate the MIP problem to make 

optimization a viable option.  Application of these combined techniques results in a new 

family of designs that we call saturated nearly orthogonal Latin hypercubes (S-NOLH).  

We discuss in detail the advantages that this family of designs offers to scientists.  
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Chapter V considers mixed-factor, mixed-level experiments that include (perhaps many) 

discrete variables that do not necessarily have the same number of possible values.  The 

mixture of these variables utilizes a systematic process for leveraging OLH and NOLH 

designs constructed using other techniques.  We apply crossed designs, column 

permutation, stacking methods, and logical lines of processes to produce designs that 

retain much of the orthogonal properties of the base design.  The base design is the set of 

continuous variables from which we create an OLH or NOLH design, as articulated from 

techniques in earlier chapters. 

Chapter VI demonstrates a case study for our designs.  We survey a number of 

studies, over a variety of applications, which use our new designs.  Finally, Chapter VII 

summarizes our conclusions in this research area and provides directions for  

future research. 
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II. SHAPING CONDITIONS FOR APPLYING UNCORRECTED 
RANDOM LATIN HYPERCUBES 

Latin hypercubes (LHs) are one of the most commonly used designs for computer 

experiments (Kleijnen et al., 2005).  However, the regularity in which high correlation 

occurs in some of these designs complicates analysis of the results.  Efforts to reduce or 

eliminate correlation are often computationally and monetarily expensive, require special 

purpose software, and can be time consuming.  Many scientists frequently use 

uncorrected4 random LH (RLH) designs in their experiments and attempt to work with 

the inefficiencies that may result from them. 

We develop tools and techniques, based on the maximum absolute pairwise 

correlation, to select an appropriate dimension for the experimental design and obtain an 

uncorrected RLH with acceptable correlations.  This method requires no specialized 

algorithms or software packages, making it applicable in most situations.  The speed with 

which our method can be employed makes it an attractive option for experimenters with 

limited resources. 

We propose an approach to find designs with acceptable correlations among their 

columns:  dimension selection and RLH generation.  Current methods to minimize 

correlation in LH designs generally fall into two broad categories:  (1) those that 

transform an original design to have an acceptable degree of correlation, or (2) those that 

eliminate correlation during construction of the design columns.  Our technique falls into 

neither category.  We accept the natural proclivity of RLH production to frequently have 

high correlation among the columns and use the randomness in column generation to  

our advantage. 

 We assert that astute selection of a design dimension (n = sample runs,  

k = factors) and a predictive model for an RLH’s expected maximum absolute pairwise 

correlation will often allow an experimenter to quickly generate an acceptable design.  

Our method takes advantage of the ease with which an RLH design is created.  Coupling 

rapid RLH generation, as we described in Chapter I, with the degree to which we can 

                                                 
4 An uncorrected LH is one to which no correlation reduction method is applied. 
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predict the maximum absolute pairwise correlation, our procedure systematically directs 

the selection of an appropriate design dimension and provides guidance for accepting an 

uncorrected RLH.  Because this method requires no manipulation of the RLH, any 

investigator can employ it with common software and computing tools. 

A. TOOLS FOR DIMENSION SELECTION AND RANDOM LATIN 
HYPERCUBE GENERATION 

We earlier established mapρ  as our nonorthogonality measure for an LH design.  

We use this measure to select an RLH design with an acceptable degree of 

nonorthogonality.  First, we use mapρ  as a guide to select an appropriate design dimension 

for an experiment.  Second, with the design dimension fixed, the nonorthogonality 

measure serves as a threshold for selecting an acceptable design from iterative 

generations of RLH.  This section describes the development of correlation-based tools 

and the procedures for their application. 

We use these mapρ -based tools when more complex algorithms associated with 

correlation reduction methods are not readily available to the experimenter.  The ease of 

generating an LH with comparatively unsophisticated means makes them an attractive 

option (Sugiyama & Chow, 1997) for creating experimental designs.  If a random 

generation of an LH has acceptable correlation among its columns, an experimenter can 

reap the benefits from an efficient design with little computational effort.  Cioppa (2002) 

defines efficient experimental designs as those which (i) detect as many significant 

variables, nonlinear effects, interactions, and their associated ranges as possible,  

(ii) declare significant as few non-significant variables and interactions as possible, and 

(iii) accomplishes (i) and (ii) with a minimal number of runs.  This chapter introduces the 

mechanism to create experimental designs that possess acceptable levels of 

nonorthogonality from uncorrected RLHs. 

1. Creating the min
mapρ  Table 

We first create a series of correlation tables that combine design dimensions, 

which correspond to known OLH and NOLH designs (Ye, 1998 and Cioppa, 2002), and 
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the number of RLHs to generate from which to select a design.  Each entry in the 

correlation table is an average of the minimum mapρ  for a given n and k.  

We begin our work with an initial set of data that consists of 42 n by k design 

combinations.  Using Cioppa’s (2002) convention for design dimensions, we explore 

combinations of n = 2 1m +  for m = 1,…,8 and k = 
1

2
m

m
−⎛ ⎞

+ ⎜ ⎟
⎝ ⎠

 for m = 1,…,16.  

Therefore, we examine design dimensions as small as {n = 17, k = 7} and as large as  

{n = 257, k = 121}.  We consider only those designs with n > k.  Designs where the 

number of runs is less than the number of factors produce unstable models (Leon, 2002).  

We enter NA (Not Applicable) for n ≤ k combinations in the tables. 

The correlation tables also account for the number of RLHs to generate, and from 

which to select an acceptable design.  We let G be the number of designs from which to 

select our experimental plan.  Tang (1998) uses a similar procedure, comparing several 

designs before selecting one to apply correlation reduction methods.  Other scientists 

consider many more designs before choosing one for an experimental design.  To create 

the correlation table we generate 200 (annotated as G200) uncorrected RLH designs for a 

specific n, k combination and compute mapρ  for each.  From this set of generated designs 

we record the smallest mapρ , which we designate as min
mapρ .  We repeat this process 1,000 

times for each n by k combination and compute the average of the 1,000 min
mapρ  values, 

min
mapρ .  This value is the entry in the table for the specific design dimension and estimates 

the corresponding expected min
mapρ  among 200 uncorrected RLH designs.  Examination of 

these estimates show low variability, as one expects from extreme statistics (David & 

Nagaraja, 2003), and acceptable precision for our work. 

The different design dimensions vary greatly in the values of their min
mapρ , but the 

largest sample standard deviation for any specific design dimension is 0.025 (Figure 3).  

Therefore, the standard deviation of min
mapρ  for any of these design dimensions will also be 

very small, considering that the average was a computation from 1,000 independent 

observations.  Figure 3 shows that the largest standard deviation occurs for a small design 
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n = 17, k = 16, corresponding to min 0.306mapρ = .  The smallest standard deviation is for a 

large RLH, n = 257, k = 106 corresponding to min 0.204mapρ = .  The majority of these have a 

standard deviation that is less than 0.01, so predictions will be meaningful. 

Standard Deviation of Sample vs. Mean of Sample for Different Design 
Dimensions
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Figure 3.   The sample standard deviation of min
mapρ  for 1,000 G200 n and k combinations 

is relatively small compared to its min
mapρ  value.  The largest standard deviation 

occurs in small designs, while the smallest deviations are for larger designs. 

Table 4 is the correlation table for different design combinations for G200.  Its 

organization shows that as the number of runs for a fixed k increases, min
mapρ  decreases, 

which is consistent with Owen (1994).  Conversely, min
mapρ  increases as k increases for a 

fixed n.  The table provides the design combinations which are likely to produce a design 

with the required mapρ  by generating 200 RLHs.  If the table indicates that the initial 

design dimension cannot attain the desired correlation within 200 RLHs, then the table 

guides the experimenter to increase n, decrease k, or both, to have a reasonable chance of 

obtaining an RLH with an acceptable mapρ .  This tool allows the experimenter to 

ascertain a realistic expectation of mapρ  for a given design dimension. 
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Table 4.   This portion of the G200 table shows the min
mapρ  for different design 

combinations where the number of designs generated in each trial is 200.  We 
enter not applicable (NA) for design combinations where n < k. 

G200 K7 K11 K16 K22 K29 K37 K46 K56 K67 K79 K92 K106 K121
N17 0.3066 0.4188 0.4932 NA NA NA NA NA NA NA NA NA NA 
N33 0.2108 0.2931 0.3503 0.3923 0.4267 NA NA NA NA NA NA NA NA 
N65 0.1485 0.2073 0.2481 0.2793 0.3038 0.3244 0.3416 0.3567 NA NA NA NA NA 
N129 0.1044 0.1460 0.1756 0.1982 0.2161 0.2310 0.2432 0.2544 0.2638 0.2721 0.2799 0.2869 0.2931
N257 0.0738 0.1032 0.1240 0.1403 0.1530 0.1638 0.1728 0.1805 0.1871 0.1935 0.1988 0.2038 0.2082

Table usage is straightforward.  Suppose an analyst wishes to explore 20 factors, 

while maintaining 0.20mapρ ≤ , but is uncertain to the number of runs to perform.  The 

shaded block of cells in Table 4 indicates that it is possible for the experimenter to obtain 

an RLH with an acceptable mapρ  within 200 RLHs if the design consists of somewhere 

between 65 and 129 runs.  The table also guides the analyst to consider fewer factors.  

Additionally, we note that randomly generating an NOLH is unlikely. 

One could also increase G.  However, empirical study shows that increasing G, 

even to 1,000, gives only marginal improvement from G200.  Table 5 gives the standard 

deviations of G1000 RLHs for design combinations of n = 17 and 257 with k = 7 and 106 

and compares them to those for G200 RLHs.  The greatest difference in standard 

deviations in G1000 and G200 designs is for n = 17, k = 7, where G1000 is less than 

G200 by 0.0039.  For the magnitudes of  min
mapρ  shown in Table 4, 0.0039 is small. 

Table 5.   We show a few different design combinations to compare the standard 
deviations of 1,000 G1000 and G200 RLHs.  The greatest difference in standard 

deviations between G1000 and G200 is for the design, n = 17, k = 7, where 
G1000’s standard deviation is smaller by 0.0039. 

G1000 
 k7 k106 

n17 0.0215 NA 
n257 0.0053 0.0028 

G200 
 k7 k106 

n17 0.0254 NA 
n257 0.0066 0.0035 
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Likewise, the magnitude of min
mapρ  for G1000 and G200 in Table 6 shows that the 

differences are very close to the standard deviations.  We conclude that G200 is a 

reasonable number of RLHs from which to choose the design with the best observed mapρ  

since the improvements from a sample size that is five times larger are small. 

Table 6.   A comparison of min
mapρ  for 1000 G1000 and G200 shows that the 

differences are within the magnitude of the standard deviations shown in Table 5. 

G1000 
 k7 k106 

n17 0.2737 NA 
n257 0.0652 0.1994

G200 
 k7 k106 

n17 0.3066 NA 
n257 0.0738 0.2038

The general guidance described in this section frames the design dimensions that 

are necessary to fulfill the analyst’s need.  However, this approach only provides a rough 

estimate of the design dimensions.  We develop another tool to specify n and k. 

2. A Function to Predict min
mapρ  

Our goal is to develop an equation that uses the values of n and k to predict min
mapρ  

from 200 RLH designs.  The objective is an equation that is sufficiently simple to use 

with a calculator.  Using data from the min
mapρ  table with the min

mapρ  formula allows the 

experimenter to enter different (n, k) pairs until a specific design dimension meets an 

acceptable nonorthogonality value. 

a. Initial Analysis of min
mapρ  

We use the min
mapρ  data from which we developed the tables in the previous 

section to construct a parsimonious predictive equation.  Patterns are evident in the 

relationships between min
mapρ  and (n, k) when either n or k is constant and the other 
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changes.  Grouping min
mapρ  values based on n uncovers clear patterns in the data.  Figure 4 

shows that as k increases and n is constant, the relationship between min
mapρ  and k appears 

logarithmic.  The overlaps in the groupings of n as k increases also indicate an interaction 

between n and k. 
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Figure 4.   A logarithmic pattern appears between min
mapρ  and k when n is constant:  

Groups of n are presented in increasing order. 

Similarly, Figure 5 displays an emerging pattern when k is constant and n 

increases.  The relationship between min
mapρ  and n displays an exponential decay.  These 

tendencies for min
mapρ  regarding n and k, respectively, provide a clue to their transformation 

in order to draw a linear relationship with each. 



 22

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0 50 100 150 200 250 300

n

M
ea

n k = 7
k = 11
k = 16

 

Figure 5.   An exponential decay or a negative power function relationship appears 
between min

mapρ  and n when k is constant.  For clarity, only a few sets for fixed 
k are in the chart. 

Transforming n and k results in each having a nearly linear relationship 

with min
mapρ .  Owen (1994) shows that the variance of the root mean square correlation 

( rmsρ ) of an uncorrected LH design is related to 3n− .  We examine different 

transformations of n to determine its linear relationship with min
mapρ .  A transformation of 

2/3n− shows a nearly linear relationship when k is constant.  Figure 6 shows an example of 

a nearly linear relationship between min
mapρ  and 2/3n−  when k = 7. 



 23

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16

n -2/3

M
ea

n

 

Figure 6.   There is a nearly linear relationship between min
mapρ  and transformed n.  For 

illustration we show the graph for k = 7. 

Similarly, a transformation of k to 1/3k −  reveals a nearly linear relationship 

with min
mapρ , when keeping n constant.  Figure 7 shows an example of a nearly linear 

relationship between min
mapρ  and 1/3k −  for a set of data where n = 257. 
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Figure 7.   A nearly linear relationship appears between min
mapρ  and transformed k.  We 

illustrate the case for n = 257. 
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Owen (1994) studies the relationship between the root mean square of an 

uncorrected Latin hypercube sample (LHS) and n, as n increases.  Owen shows 

empirically that the relationship between the rmsρ  of an uncorrected LHS and n to be 

( ) ( )log 0.5logrms nρ = − . 

Owen’s results support the exponentially decaying relationship that we 

find between min
mapρ  and n.  We note that this equation is independent of k.  To complete 

our study, we explore the simultaneous relationships of n and k with min
mapρ . 

b. Exploring Simple Linear Regression Models for min
mapρ  

Examination of the relationship between min
mapρ  and the two transformed 

variables, 2/3n−  and 1/3k − , reveals that it is possible to fit a multiple linear regression 

model to the data.  A study of simple linear relationships between min
mapρ  and each of the 

transformed values shows that they are nearly linear.  Because of an earlier indication 

that an interaction exists between n and k, we also explore the relationship between min
mapρ  

and 2/3 1/3n k− − .   Fitting simple linear regression models of min
mapρ  versus 2/3n− , 1/3k − , and 

2/3 1/3n k− −  results in each model having an 2R of 0.98 or greater. 

c. A Multiple Linear Regression Model for min
mapρ  

The above results indicate that a multiple linear regression model with two 

main effect terms and one interaction term can be a good predictor for min
mapρ .  To fit a 

multiple linear regression model we use min
mapρ  data from 115 different design dimensions.  

The least squares fit gives an 2 0.99R = .  Our estimated predictor, which we denote by 

( )min
E

mapρ , is given by 

( )min 2/3 1/3 2 /3 1/30.0873 7.859 0.109 11.702
E

map n k n kρ − − − −= + − − . 

 



 25

d. Adequacy of the Multiple Linear Regression Model for min
mapρ  

The multiple linear regression model fit adequately estimates expected 
min
mapρ .  The statistics from the predicted values’ residuals are given in Table 7.  Of course, 

the residual mean is zero.  A standard deviation of 0.00966 and a range of 0.05 are 

relatively small for the values that the model is predicting.  The median and the skewness 

value indicate that the model tends to slightly underestimate the actual min
mapρ  values. 

Table 7.   Descriptive statistics from the residuals derived from the MLR predictions 
show negative skewness and a relatively small range.  The model tends to slightly 
underestimate the value of the minimum maximum absolute pairwise correlation 

value of 200 RLH designs. 

Statistics for Residuals 
Median 0.0029624
Standard Deviation 0.0096594
Kurtosis 0.8707658
Skewness –1.0013506
Range 0.0501953
Minimum –0.0364850
Maximum 0.0137103
Count 115.0000000

It is evident from Figure 8 that there are some curvilinear tendencies in the 

residual plot and the residuals do not follow a normal distribution, but the residuals are 

not overly large with respect to the predicted values.  Another model that includes 

quadratic terms improves the predictive capabilities of the model, but requires a more 

complex expression (see Appendix E).  Considering the parsimony that we desire and the 

relatively small errors, we accept this model. 
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Figure 8.   This residual plot of 115 different predicted min
mapρ values shows curvature. 

e. Application of the ( )min
E

mapρ  Model 

We now discuss the use of the ( )min
E

mapρ  equation to estimate expected 

min
mapρ , in conjunction with the min

mapρ  table.  The min
mapρ  table provides general guidance for 

the range of n and k in which a specific correlation value may reside.  Because of its 

simplicity, the ( )min
E

mapρ  equation can easily be incorporated into a spreadsheet to compute 

estimated values of min
mapρ , as the experimenter varies n and k.  Calculations stop when the 

experimenter finds an n and k combination that results in an acceptable correlation value.  

These are the design dimensions that afford the analyst the best chance of finding an 

uncorrected RLH with the desired mapρ .  Because the equation is sufficiently simple, one 

can also solve for any of the three values, when the other two are fixed. 

To produce the design for designated n and k  we generate an RLH and compute 

mapρ .  The experimenter may use any number of software programs to produce RLH 
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designs and to measure mapρ .  Within G generations of RLH designs, we assert that the 

analyst will find a design with an acceptable mapρ . 

B. DESIGN DEVELOPMENT WITH CORRELATION-BASED TOOLS 

We employ the correlation-based tools that we have developed in Section A.  A 

step-by-step procedure guides experimenters in implementing these tools.  A constructive 

example illustrates the leverage that experimenters can gain from RLH designs. 

1. The Process for Dimension Selection and RLH Design Generation 

 Our procedure for obtaining an experimental RLH design with an acceptable 

nonorthogonality measure has the following steps. 

Step 1:  Enter the min
mapρ  table to obtain general guidance about design dimensions.  Entry 

into the table may occur in one of four ways: 

• The experimenter may have a correlation threshold for a specific number 
of factors. 

• The experimenter may have a limit for the number of sample runs and a 
correlation threshold. 

• The experimenter may have a correlation threshold and an idea for the 
design dimensions. 

• The experimenter may have a correlation threshold with little or no idea 
about the design dimensions. 

Step 2:  From the min
mapρ  table, select the range of n and k based on the correlation 

threshold.  If required, rough interpolation within the table values is sufficient to define 

the ranges. 

Step 3:  Establish a spreadsheet to compute ( )min
E

mapρ  for each design combination. 

Step 4:  Calculate ( )min
E

mapρ  values.  Best practices reveal that fixing k first, while 

changing n, is a good approach. 
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Step 5:  Stop searching combinations when a value of ( )min
E

mapρ  that approximately meets 

the correlation threshold is calculated. 

Step 6:  Record the design combination (n, k) that meets the correlation threshold. 

Step 7:  Fix the design dimension and generate up to G number of RLH designs.  

Measure mapρ  for each new design and stop when the actual mapρ  is satisfactorily close to 

the correlation threshold or all G designs have been generated.  Note that this does not 

guarantee that the threshold is met. 

Following these steps, an experimenter can obtain an acceptable design without a 

large investment in computational costs and time.  We designate the resulting RLH 

design as n
kR .5 

2. A Hypothetical Case Requiring an Uncatalogued Design Dimension 

This example clarifies the steps for determining the design dimensions and 

generating an acceptable RLH.  An experimenter seeks an experimental design to assess  

k = 20 factors with, at most, n = 100 runs.  Since a readily available 100
20N  or 100

20O design 

does not exist, the researcher could try our methodology.  The experimenter determines 

that an experimental design with 0.22mapρ ≤  is acceptable.  To get an initial idea if a 

design that the scientist needs is possible, we enter Table 8 with correlation value, 0.22,  

k = 20, and n = 100.  Because there are 20 factors to assess, the experimenter looks down 

the columns of K16 and K22, which bracket k = 20.  The shaded part of Table 8 shows 

that the RLH design that can meet the correlation threshold will have between 65 and 129 

runs, because the min
mapρ  values at these two sample run values contain the desired mapρ .  

Since the number of factors is fixed, k = 20, the experimenter is concerned with the range 

65 100n≤ ≤ . 

                                                 
5 We pattern this naming convention similar to Cioppa and Ye:  Cioppa (2002) designated NOLH 

designs as n
kN  and Ye (1998) designated OLH designs as n

kO .  The symbol n
kR  emphasizes its  

random nature. 
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Table 8.   This table is a section of a G200 min
mapρ  table.  It has values for dimensions 

with k = 22 or less. 

G200 K7 K11 K16 K22 
N17 0.3066 0.4188 0.4932 NA 
N33 0.2108 0.2931 0.3503 0.3923
N65 0.1485 0.2073 0.2481 0.2793
N129 0.1044 0.1460 0.1756 0.1982
N257 0.0738 0.1032 0.1240 0.1403

After approximating the design dimensions, the experimenter uses the equation 

( )min 2/3 1/3 2 /3 1/30.0873 7.859 0.109 11.702
E

map n k n kρ − − − −= + − −  to compute values from 

different design combinations until one is satisfactorily close to the correlation threshold.  

As we noted earlier, if the experimenter fixes two of the values in the equation, the third 

may be found.  We recognize that this equation provides an estimate of the expected 
min
mapρ .  Since the standard deviation is small, the actual min

mapρ  will usually be close to this 

average value.  However, about half of the time min
mapρ  will be above it.  If the requirement 

is strict, we can repeat the process several times with a high probability (approximately 

( )#1 0.5 trials− ) of obtaining the threshold.  Another approach is to use a conservative value 

of the target min
mapρ . 

The experimenter holds k = 20 constant and incrementally increases n.  Table 8 

shows that at n = 65, the correlation is between 0.2481 and 0.2793.  The spreadsheet 

results in Table 9 show that an 91
20R  design can have a mapρ  that is approximately 0.22.  In 

this case, it is possible to find a design that does not require all 100 sample runs.  

Depending on the cost of each run, the experimenter can extend the budget. 



 30

Table 9.   Calculations for ( )min
E

mapρ using the MLR model as n changes. 

n k ( )min
E

mapρ

81 20 0.236 
83 20 0.233 
85 20 0.230 
87 20 0.228 
89 20 0.225 
91 20 0.222 

To validate the estimate for mapρ  for the 91
20R  design, we use R, a free software 

version6 of the statistical package S-Plus, to generate 200 91
20R  designs, while recording 

the mapρ  values.  We successfully produce an RLH design with mapρ  equal to 0.219.  It 

may be possible to increase n to 93, but the current result  

is acceptable. 

Any experimenter can follow the process that we have described to construct a 

design that does not exist, or when there is a lack of computing power or software.  An 

experimenter may also not require an orthogonal design and desire some correlation 

(Iman & Shortencarrier, 1985).  Iman and Conover (1982) discuss ways to induce 

correlation, but RLH designs are an available alternative.  Additionally, the new design 

dimensions that these tools provide are advantageous.  The combination of min
mapρ  tables, 

( )min
E

mapρ  equations, and RLH generation give researchers a simple, fast, and effective 

means to construct experimental designs with acceptable nonorthogonality.  Of course, 

this procedure requires a good random number generator (Law & Kelton, 1999).  

C. EFFECTS OF FEWER CANDIDATE DESIGNS (G) 

There may be cases in which the experimenter does not wish to generate G = 200 

RLHs before selecting a suitable design.  The manner in which the experimenter 

                                                 
6 R is freeware.  The interested reader can contact the author or check the SEED Center for Data 

Farming website at http://harvest.nps.edu for the R code. 
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generates RLH designs may also be a constraint.  To mitigate the impact of such 

circumstances, we provide min
mapρ  tables and ( )min

E

mapρ  expressions for different values of G.  

We introduce the symbol ( )min
map G

ρ  as the smallest maximum absolute pairwise correlation 

value in G trials.  The corresponding equation to estimate the expected smallest 

maximum absolute pairwise correlation value in G iterations is designated as ( )min
E

map
G

ρ . 

Investigating the impact of different values of G reveals two notable observations.  

We empirically show that for G > 200, the values of min
mapρ  vary only slightly.  Conversely, 

as G decreases, the variance in min
mapρ  increases, but not overly so.  As a result, the 

expressions show similarity.  However, the differences are important.  To retain utility to 

experimenters, we set the lower bound for G at 10 and investigate 

{ }10,  25,  50,  75,  100,  125,  150,175, 200G∈ . 

With some slight modifications we use the same methodology to explore the 

relationship of transformed n and k values, as well as their interaction term.  We fit 

multiple linear regressions for each G.  We catalogue ( )min
map

G
ρ  tables and corresponding 

( )min
E

map
G

ρ  models.  In our initial effort, we use 42 design dimensions to develop the 

( )min

200

E

map
G

ρ  model.  We refine the ( )min

200

E

map
G

ρ  model fit using all 115 design combinations 

and further use these data to develop the equations that follow. 

( )min 2/3 1/3 2 /3 1/3

200
0.0873 7.859 0.109 11.702

E

map
G

n k n kρ − − − −= + − −        (2.1)  

 

( )min 2/3 1/3 2 /3 1/3

175
0.0873 7.864 0.109 11.682

E

map
G

n k n kρ − − − −= + − −  (2.2) 

 

( )min 2/3 1/3 2 /3 1/3

150
0.0874 7.870 0.108 11.650

E

map
G

n k n kρ − − − −= + − −  (2.3) 

 

( )min 2/3 1/3 2 /3 1/3

125
0.0875 7.872 0.107 11.611

E

map
G

n k n kρ − − − −= + − −  (2.4) 
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( )min 2/3 1/3 2 /3 1/3

100
0.0875 7.883 0.106 11.578

E

map
G

n k n kρ − − − −= + − −   (2.5) 

 

( )min 2/3 1/3 2 /3 1/3

75
0.0877 7.886 0.105 11.502

E

map
G

n k n kρ − − − −= + − −     (2.6) 

 

( )min 2/3 1/3 2/3 1/3

50
0.0877 7.912 0.103 11.423

E

map
G

n k n kρ − − − −= + − −   (2.7) 

 

( )min 2/3 1/3 2 /3 1/3

25
0.0881 7.945 0.0988 11.270

E

map
G

n k n kρ − − − −= + − −    (2.8) 

 

( )min 2/3 1/3 2 /3 1/3

10
0.0883 7.996 0.0902 11.014

E

map
G

n k n kρ − − − −= + − −         (2.9) 

These equations have similarity in their coefficients, but the subtleties in each 

expression are important.  The differences result in fairly precise estimates of expected 
min
mapρ  from a given G RLHs.  This set of equations provide the experimenter with an 

option for the number of RLH designs to generate, along with design choices of n, k, and 

mapρ . 

D. SUMMARY 

Scientists often use uncorrected LH designs and deal with effects of having high 

correlation among the columns of the design matrix.  Our efforts simplify the process for 

any experimenter to obtain a design that meets a correlation threshold, which may not 

necessarily be orthogonal, or nearly orthogonal.  We define the mapρ  of an LH as a single 

measure of its nonorthogonality.  We describe tools based on this measure, and present an 

algorithm that combines them with RLH generation to obtain designs with acceptable 

nonorthogonality.  Tables for min
mapρ  for specific values of G are reusable, as are the 

formulas for ( )min
E

map
G

ρ .  The availability of packages that easily generate LHs and the 

ubiquity of off-the-shelf analytical software offer scientists a powerful, but simple, set of 

tools to obtain a desired experimental design. 
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III. CORRECTED RLH USING FLORIAN’S METHOD FOR  
NEW DESIGNS 

This chapter explores the utility of applying Florian’s method to reduce 

correlation in LHs.  We iteratively apply Florian’s method to produce new OLH and 

NOLH designs.  Cioppa (2002) conjectures that it is necessary to generate a large number 

of candidate LH designs from which to choose a few that meet nonorthogonality 

thresholds before applying correlation reduction methods.  In some cases, Cioppa 

suggests a million or more candidate designs.  We explain the relationship of the size of 

the experiment and the number of candidate RLH designs to generate before applying 

Florian’s method.  A study of this relationship reveals that the number of candidate 

designs is often much less than 1,000 for even large experiments. 

A. FLORIAN’S CORRELATION REDUCTION METHOD 

This section briefly describes Florian’s method to understand its mathematical 

foundations (Florian, 1992).  Consider an initial RLH design, X, with dimension n and k.  

Because the number of unique value levels for any factor in an LH is equal to the number 

of runs (n) in the design matrix, there are no ties.  We convert the design into a matrix of 

ranks, R, with the same dimension as the design matrix.  The entries in each column in R 

are the ranks of the values for the corresponding variable. 

We use the rank correlation matrix of R to construct the transformation matrix.  

The rank correlation matrix, T, consists of the pairwise correlations of the columns of R.  

The value ijT  is Spearman’s coefficient of correlation (Conover, 1999) for the columns 

iR  and jR  for all pairs (i,j) in R, with 

( )
( )

2

1
2

6
1

1

n
i j
l l

l
ij

R R
T

n n
=

−
= −

−

∑
, 

where i
lR  is the rank of the lth element in the ith column.  Spearman’s computation of the 

correlation is a modification of Pearson’s sample coefficient of correlation, based on 
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ranks when there are no ties.  Thus, it is appropriate for our use since each value in the 

design column is unique. 

Clearly T is symmetric and positive definite.  Therefore, it is factorable through 

Cholesky’s decomposition (Leon, 2002).  We seek a transformation matrix, 'S , such that 
'STS is equal to the identity matrix, where 1S Q−= and 'T QQ= . 

Determining Q  involves Cholesky’s method.  Because T is symmetric, a lower 

triangular matrix, L, exists such that 'T LDL= , where D is a diagonal matrix of positive 

values.  Cholesky’s decomposition states that 1/ 2
1L LD= and that '

1 1L L T= .  Therefore, 

1Q L=  and ( ) ( )( )'1 11 1 1/2 ' 1/2
1 , so S Q L LD S LD

− −− −= = = = . 

Florian uses 'S to update R.  The new rank matrix is '
newR RS= and the factor 

level values of X are rearranged to meet the new rank structure, which usually results in 

reduced correlation among its columns (Florian, 1992). 

B. DIMENSIONALITY AND FLORIAN’S METHOD 

A Florian-improved RLH (FRLH) design is the result of a relatively simple 

method for creating uncatalogued nearly orthogonal designs.  We produce one RLH, 

compute its mapρ , and apply Florian’s method.  We compute mapρ  for the transformed 

matrix and compare the two nonorthogonality measures.  If there is an improvement, we 

reapply Florian’s method.  We iterate until mapρ  no longer improves and store the last 

improved design.  Table 10 contains the best mapρ  from 20 separate instances of this 

process for each of many different RLH design dimensions.  We highlight a number of 

the design dimensions that previous size restrictions prevent.  Notably, we find an 

improved n = 33, k = 16 design that has a mapρ  of 0.031, which meets Ang’s (2006) 

NOLH criteria.  With Cioppa’s (2002) NOLH convention, exploring 16 factors requires 

at least 65 runs.  Ang (2006) reduces the number of runs to 33.  Our unique n = 33, k = 16 

design equals Ang’s achievement.  Additionally, our method increases k and introduces a 

new n = 33, k = 22 design with mapρ  equal to 0.034.  Again using Cioppa’s (2002) and 
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Ye’s (1998) naming convention, we use the symbol n
kF  to denote an FRLH design with n 

runs and k factors since it may not necessarily result in an OLH or NOLH. 

Table 10.   The best maximum absolute pairwise correlation values from 20 FRLHs 
of the same design dimension are presented.  Gray-shaded design dimensions 

emphasize intervals that this technique can fill in the OLH and NOLH catalogue, 
using Ang’s (2006) near orthogonal threshold.  Diagonal-lined areas identify 

dimensions yet to meet NOLH criteria. 

 K 
N 7 11 16 22 29 37 46 56 
17 0.054 0.061 0.105 NA NA NA NA NA 
25 0.039 0.039 0.053 0.080 NA NA NA NA 
33 0.028 0.030 0.031 0.034 0.054 NA NA NA 
49 0.019 0.018 0.018 0.020 0.022 0.036 0.056 NA 
65 0.013 0.014 0.013 0.015 0.015 0.017 0.019 0.039 
97 0.009 0.009 0.010 0.010 0.010 0.010 0.010 0.012 
129 0.007 0.008 0.006 0.007 0.007 0.006 0.007 0.007 
193 0.005 0.005 0.004 0.004 0.005 0.005 0.005 0.005 
257 0.003 0.004 0.003 0.003 0.003 0.004 0.003 0.003 
513 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 

 For design dimensions that meet our guidance, Florian’s method is often 

sufficient to produce an NOLH design from a single RLH.  Cioppa (2002) generates 

millions of designs before selecting a few on which to apply Florian’s method.   

Tang (1998) empirically studies the effects of initial designs when reducing correlation.  

Tang finds that for small values of n and k, the initial design has a large effect on the final 

design’s correlation value.  To mitigate this effect, Tang generates three designs and 

chooses the one with the least correlation as the initial design.  As n increases, the effects 

of the initial design diminish.  We provide empirical evidence that, for smaller design 

dimensions, the initial design has greater impact. 

We produce many new NOLH designs with iterative applications of Florian’s 

method.  While previous methods are constrained to one exact design for a given 

dimension, our technique can result in many NOLH designs for the same dimension.  

Additionally, this method results in many new large NOLH designs.  For instance, we 

create an 759
506N  design that has 0.00267mapρ = in 50 minutes using a standard 2 gigahertz 

desktop computer with 3 gigabytes of RAM. 
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We further examine the role that design dimensions play in the effectiveness of 

Florian’s method.  Using only one candidate RLH for each design dimension, we 

examine 53 different design dimensions in which the ratio of k and n is less than or equal 

to 0.333.  Of the 53 designs, 52 met NOLH criteria after iterative application of Florian’s 

method.  In all but three of the designs, n was greater than or equal to 49.  After empirical 

evaluation, we develop a rule of thumb that any design dimension, where 50n >  and 

3
nk ≤ , likely results in a design that meets NOLH criteria.  

A comparison of these new n
kF  designs with catalogued NOLH designs provides 

some gauge for the veracity of our claim regarding Florian’s method.  Table 11 gives 

mapρ  before and after application of Florian’s method to a single RLH.  We compare an 

65
16F  design with the actual mapρ  value of the catalogued NOLH design.  In ten trials, we 

see that all ten 65
16F  designs each have a mapρ  that is less than the 65

16N  mapρ .  We 

acknowledge that Cioppa also sought space-filling characteristics for his designs.  We 

include the 65
16F  condition numbers (CN), which also show improvement.  Other trials for 

different design dimensions yield similar results.  Although not all comparisons favor the 
n

kF  designs as having better properties than n
kN  designs, they are very similar in 

measured values and still meet nonorthogonality thresholds. 



 37

Table 11.   Comparison of mapρ  values and CNs for RLH, 65
16F , and 65

16N . 

 Before Florian 65
16F  65

16N  

 mapρ  CN mapρ  CN mapρ  CN 
Trial 1 0.3012 6.7312 0.0176 1.0929 0.0219 1.1030 
Trial 2 0.4272 5.5712 0.0191 1.0992 0.0219 1.1030 
Trial 3 0.4176 7.5441 0.0149 1.0852 0.0219 1.1030 
Trial 4 0.3831 5.9205 0.0215 1.1028 0.0219 1.1030 
Trial 5 0.3216 6.5351 0.0156 1.0818 0.0219 1.1030 
Trial 6 0.3475 6.2600 0.0157 1.0853 0.0219 1.1030 
Trial 7 0.3096 6.6278 0.0172 1.0893 0.0219 1.1030 
Trial 8 0.4438 7.5144 0.0158 1.0949 0.0219 1.1030 
Trial 9 0.4882 7.9720 0.0179 1.0911 0.0219 1.1030 
Trial 10 0.3221 6.7882 0.0198 1.0901 0.0219 1.1030 

These results lead to a loose constraint for applying Florian’s method.  When 

50n > and 
3
nk ≤ , we can usually transform RLH designs to meet Cioppa’s (2002) 

NOLH criteria:  0.03mapρ ≤  and condition number less than or equal to 1.13, as well as 

Ang’s (2006) thresholds of 0.05mapρ ≤  and condition number less than or equal to 1.20.  

Ang’s criteria allow more latitude and we therefore adopt them as our own.  We note that 

a departure from these guidelines still results in a reasonable reduction of the column 

correlation in the design.  Later discussions in this study show new methods that further 

relax even these loose constraints. 

C. CONSTRUCTING NEARLY ORTHOGONAL LATIN HYPERCUBES 

A methodical process to generate NOLH designs with desired orthogonal 

characteristics may be easily implemented.  The first iteration of Florian results in a new 

design matrix, Xnew.  However, mapρ  for this new design matrix may not be acceptable 

and it may be possible to improve Xnew even further.  Steps to iteratively update the latest 

design to create a design with the smallest mapρ  follow. 

Step 1:  Generate an RLH, Xold. 

Step 2:  Compute mapρ of Xold and designate as ( )map old
ρ . 
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Step 3:  Apply Florian’s method to Xold to create Xnew. 

Step 4:  Measure mapρ of Xnew and designate as ( )map new
ρ . 

Step 5:  If ( )map new
ρ is less than ( )map old

ρ , then rename  Xnew to Xold and ( )map new
ρ to 

( )map old
ρ  and return to Step 3. 

Step 6:  At termination, Xold is the best design. 

Florian’s method overcomes the dimension limits that other correlation reduction 

methods face.  To illustrate the extent that Florian’s method fills the gaps in NOLH 

design dimensions, we explore multiple LH designs that receive this treatment.  Table 12 

shows mapρ  values for a collection of new designs after treatment with Florian’s method.  

As in previous discussions, we do not develop designs where n k< .  As expected (Owen, 

1994), designs in which k n→  demonstrate an increase in mapρ .  This table includes a 

number of design dimensions that do not exist in the current catalogue of OLH and 

NOLH designs.  To follow the guidelines for NOLH design dimensions, a design with 22 

factors (m = 7) requires 129 runs.  We show that a design for 49 runs and 22 factors with 

mapρ  of 0.020 can be obtained by Florian’s method.  In fact, we catalogue NOLH designs 

for 97 and more runs, as well as for values of n between these values. 

Table 12.   These are the best maximum absolute pairwise correlation values from 20 
FRLHs of the same design dimension.  These designs are a continuation of  

Table 10.  All of these design dimensions, as well as the design combinations 
between their intervals, fill many of the gaps in the OLH and NOLH catalogue. 

 K 
N 7 11 16 22 29 37 46 56 67 79 92 106 121 137 154 172
17 0.054 0.061 0.105 NA NA NA NA NA NA NA NA NA NA NA NA NA
25 0.039 0.039 0.053 0.080 NA NA NA NA NA NA NA NA NA NA NA NA
33 0.028 0.030 0.031 0.034 0.054 NA NA NA NA NA NA NA NA NA NA NA
49 0.019 0.018 0.018 0.020 0.022 0.036 0.056 NA NA NA NA NA NA NA NA NA
65 0.013 0.014 0.013 0.015 0.015 0.017 0.019 0.039 NA NA NA NA NA NA NA NA
97 0.009 0.009 0.010 0.010 0.010 0.010 0.010 0.012 0.0120.0530.052 NA NA NA NA NA
129 0.007 0.008 0.006 0.007 0.007 0.006 0.007 0.007 0.0080.0100.0180.030 0.058 NA NA NA
193 0.005 0.005 0.004 0.004 0.005 0.005 0.005 0.005 0.0060.0050.0050.006 0.0100.0120.0420.037
257 0.003 0.004 0.003 0.003 0.003 0.004 0.003 0.003 0.0040.0040.0040.004 0.0060.0050.0050.012
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We conclude that, for an experiment requiring 50n > and 
3
nk ≤ , we can produce 

many new NOLH designs with Florian’s method.  As Table 12 shows, we can sometimes 

violate this rule of thumb and still produce an NOLH, such as the n = 49,  

k = 22 design (shaded in Table 12) discussed previously.  We also see that as k 

approaches n, Florian’s method finds it difficult to produce a design with 0.05mapρ ≤ , 

such as the n = 25, k = 22 design that has 0.08mapρ = .  We explore a new approach to 

solve this new aspect of the experimental design problem. 

D. SUMMARY 

The body of work to reduce or eliminate correlations in LH designs is extensive.  

OLHs (Ye, 1998) and NOLHs (Cioppa, 2002) have earned reputations as highly useful 

designs.  Historically, construction of these designs is computer intensive and time 

consuming.  Our findings show that Florian’s method and RLH generation can save the 

analyst a significant amount of time and computational cost.  Moreover, by starting with 

new RLHs, we can generate many such designs and use other criteria (e.g., space-filling 

properties or higher-order correlations) to discriminate between multiple NOLHs.  Given 

our simple rule of thumb, where 50n >  and 
3
nk ≤ , many new NOLH designs are 

possible with this technique.  In many cases where this rule of thumb does not hold, 

Florian’s method is still effective enough to produce a design that meets NOLH 

nonorthogonality criteria. 
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IV. A MIXED INTEGER PROGRAMMING APPROACH TO 
MINIMIZE mapρ  

 This chapter explores optimization as a means to construct orthogonal Latin 

hypercube (OLH) and nearly OLH (NOLH) designs, thereby further expanding the 

situations in which they can be used.  We are aware of the difficulties that an 

optimization approach presents for solving the experimental design problem.  As n and k 

increase, the dimensionality of LHs makes optimization an unattractive option.  As 

Chapter I explains, a vast number of unique LHs are possible for even moderate values of 

n and k.  If an exhaustive search were applied, even moderately large values of n and k 

would prove to be impossible to solve to optimality.  For instance, to develop an 33
11N  

design with an optimization model that considers all possible permutations may involve 

an algorithm that can explore up to ( )1133!  LHs to guarantee an optimal solution.  

Techniques such as the simplex method (Nash & Sofer, 1996) are more efficient in 

finding an optimal answer when all variables are continuous.  However, nonlinear and 

integer methods run into a “combinatorial explosion” (Wolsey, 1998) that make solving 

the complete design of experiment problem computationally intractable as n and k grow 

large.  Therefore, we develop a construction methodology based on a focused 

optimization routine, which greatly expands the range of values for n and k for which we 

can create orthogonal and nearly orthogonal designs. 

 We combine RLH generation, Florian’s correlation reduction method, and 

optimization of a mixed integer programming problem to develop a new algorithm that 

relaxes existing size restrictions and fills many gaps that exists in the OLH and NOLH 

library.  We continue to use mapρ  as the key measure for discriminating between designs.  

To best illustrate the power of this new methodology, we concentrate on design 

dimensions that are absent and most difficult to generate with previous methods; that is, 

experiments with 50n ≤ and k approaches n. 
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A. SIMPLIFYING THE COMPUTATION FOR NONORTHOGONALITY 

 In explaining our optimization approach to address the DOE problem, we find it is 

more useful to discuss LHs in terms of the ranks that correspond to each factor’s value 

levels.  Because LH designs assume all variables are continuous, the experimenter simply 

sets the number of unique values to equal the number of runs.  Unique factor values 

ensure that there are no ties in the ranks of any column in the design.  Consequently, for a 

design with n runs, each column in the LH design is merely a permutation of integers  

1 to n. 

 Considering values as ranks from 1 to n simplifies computations.  For instance, 

the average value in any column, l, is always 1
2l

nx x +
= = .  The corresponding variance 

for any column is ( )
222 2

1

1 1
12

n
l

l i
i

nx x
n

σ σ
=

−
= = − =∑ , i.e., a constant, for any n.  The 

covariance between columns l and m is ( )( )
1

1
1

n
l m

lm i i
i

x x x x
n

σ
=

= − −
− ∑ .  Therefore, the 

correlation between columns l and m is 

 1
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1

1 1
2 2

1
2

n
l m
i i

ilm
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l m
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ni
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σ σ

=

=

+ +⎛ ⎞⎛ ⎞− −⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠= =

+⎛ ⎞−⎜ ⎟
⎝ ⎠

∑

∑
. (4.1) 

For any dimension n and k, we wish to find a design matrix,   n x kX , with the 

smallest maximum absolute pairwise correlation mapρ .  We use an optimization model 

and algorithm to help minimize mapρ . 

B. A LINEAR FORMULATION OF THE MATHEMATICAL MODEL 

 From Equation 4.1, the denominator is constant for all l and m.  The most 

important features of the equation are in the numerator.  Therefore, minimizing mapρ  is 

equivalent to minimizing 

 ( )( )map
1

max
n

l m
i il m i

v x x x x
≠

=

≡ − −∑ . (4.2) 
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Our task to minimize mapv  is constrained by the requirement that each column of X is a 

permutation of the first n natural numbers.  Difficulties in formulation arise in the 

nonlinearity and nondifferentiability of the absolute-value function.  To construct an 

OLH or NOLH with dimensions n and k using optimization techniques, we develop a 

linear mathematical model for Equation 4.2. 

1. An Initial Mathematical Model 

We follow the Naval Postgraduate School Operations Research format (Dell, 

2004) for presenting an optimization problem.  We annotate the objective and constraint 

equations in these formulations for reference.  Our initial formulation of the  

problem follows. 

Model 1 (n, k): 

INDICES 

i  runs (alias j)7  i = 1,…,n 

l  factors (alias m) l = 1,…,k 

VARIABLES 
l
iX   level of lth factor on the ith run 

V  variable for mapv  

FORMULATION 

( )

( )( )

( )( ) ( )

( )
( )

1

1

min A0

s.t. (A1)

A2

, A3

1 , integer , A4

n
l m
i i

i
n

l m
i i

i
l l
i j

l
i

V

V X x X x l m

V X x X x l m

X X i j l

X n i l

=

=

≥ − − ∀ ≠

≥ − − − ∀ ≠

≠ ∀ ≠

≤ ≤ ∀

∑

∑  

The objective function A0 is simply V; our constraints force V to assume the value 

mapv  at our approved solution.  Because the absolute value is a nonlinear expression, 

                                                 
7 The alias of an index, i, allows the programmer to use a different index, j, to refer to the same set  

of numbers. 
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constraints A1 and A2 separate it into terms that we can more readily transform into 

linear terms.  Constraints A3 and A4 require that each column of X be a permutation of 

the integers from 1 to n.  Constraints A1 and A2 are nonlinear, and constraints A3 and A4 

are nonconvex. 

2. Transformation of a Nonlinear Optimization Problem 

We reformulate our mathematical model with the goal of converting it into a 

linear optimization problem.  The advantage of linear functions is that they are proven to 

be convex and thus have one or more extreme points that correspond to maximum or 

minimum objective values (Bazaraa et al., 2005). 

 Optimization frequently centers on solving convex problems, of which linear 

types are most easily determined.  The general problem of convex optimization is to find 

the minimum of a convex or quasiconvex function on a finite-dimensional convex space, 

specified by a set of extreme points and extreme rays or vectors (Bazaraa et al., 2005).  

As so defined, a maximum or minimum value of a convex function may be found by 

systematically examining extreme points from the convex space (Bertsimas & Tsitsiklis, 

1997: Nash & Sofer, 1998). 

 The constraints of the mathematical model define the feasible region of the 

objective function.  A set of convex or quasiconvex constraints result in a convex or 

quasiconvex feasible region, which contains extreme points and an optimal solution.  

Reciprocally, a feasible region resulting from one or more nonconvex constraints results 

in a nonconvex feasible region, which cannot guarantee an optimal solution.  

Unfortunately, we find the design of experiment problem to be nonlinear and nonconvex. 

 Our first step to linearize the problem is to reformulate A3 by introducing binary 

variables.  We represent one run (design point) i of one factor l with a set of n binary 

variables, one for each possible level j of the factor on that run.  For a binary variable, 

,
l

i jY , if the factor l is set to the jth level in the ith run, we let the variable equal one, and 

zero otherwise.  Therefore, 4
3,7 1Y =  means that for the 4th factor, the level is set at 7 in the 

3rd run of the experiment.  The addition of these variables requires new constraints to 

control the values that they may assume.  Our revised model follows. 
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Model 2 (n, k): 

VARIABLES 

,
l

i jY   equals 1 (0 otherwise) if factor l is set to level j in run i 

V  variable for mapv  

FORMULATION 

( )

( )

( )

( )

{ } ( )

, ,
1 1 1
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1 1 1

,
1

,
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,
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i j
i
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i j

V

V jY x jY x l m l m
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Y j l
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= = =

=
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= ∀

∈ ∀

∑ ∑ ∑

∑ ∑ ∑

∑

∑

 

Constraints B1 and B2 are reformulations of A1 and A2.  Constraints for B3 

require that exactly one level be chosen for each factor, for each run.  Constraints B4 

ensure that each level is chosen exactly one time for each factor.  These constraints are 

linear since they are nothing more than a summation of simple variables.  However, 

constraints B1 and B2 are still nonlinear because they involve the product of ,
l

i jY  and ,
m

i jY . 

3. A Complete Linear Formulation of the Optimization Problem 

 There are several ways to deal with the nonlinearity in B1 and B2.  One is to 

develop derivative-free heuristic algorithms (including the many varieties of local search) 

that generate many design matrices, and evaluate V for each one.  Evaluating V is much 

easier than optimizing it, but we recognize that heuristics do not guarantee an optimal 

solution, although they sometimes result in one. 

Our approach to the difficulties associated with constraints B1 and B2 is to 

optimize one column (factor) of the design matrix at a time.  We find level settings for a 
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given factor, m, that minimizes mapv  between m and every other (fixed) column in the 

design.  Therefore, variables corresponding to factor m are the only ones that appear in 

the model, and we treat all other factors in the design as having “fixed” values, denoted 

ˆ l
iX .  The resulting levels for the targeted factor m guarantees the lowest value for mapv , 

given that all other factor levels remain constant.  This final formulation is a single-

column optimization program for a specified column, m, in a design with n runs and a 

total of k factors. 

Model 3 (m, k ,n): 

DATA 

ˆ l
iX   level of factor l for run i in design X 

FORMULATION 

( )

( )

( ) ( )

( )

( )

{ } ( )

,
1 1

,
1 1

,
1

,
1

,
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n
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i
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V
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 Constraints C1 and C2 are now linear in mY .  Several of the terms in these 

constraints are constant, and can be further simplified: 

 
( ) ( ) ( ) ( )

( )
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1 1 1 1 1

,
1 1
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 (4.3) 
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This simplification yields our final model. 

Final model 3 (m, n, k): 

INDICES 

i  runs (alias j)  i = 1,…,n 

l  factors    l = 1,…,k 

DATA 

ˆ l
iX   level value of factor l for run i in the given design X 

VARIABLES 

,
m

i jY   equals 1 (0 otherwise) if factor m is set to level j in run i 

V  maximum absolute value of mapv for any two columns in X 

FORMULATION 
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For the remainder of this document, we refer to the optimization program based 

on the final model as VMIN:  a minimization model for the variable V. 

C. OPERATIONALIZING THE LINEAR OPTIMIZATION PROBLEM 

This final formulization is key to our search for new designs with orthogonal or 

nearly orthogonal properties.  We encode VMIN into GAMS (General Algebraic 

Modeling System, 2008), a powerful high-level modeling system for mathematical 

programming and optimization, and solve using the commercially available solver Cplex 

(2008).  GAMS consists of a language compiler and a suite of integrated high-
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performance solvers that are specifically designed for modeling large linear, nonlinear, 

and mixed integer optimization problems.  The result is a robust programming language 

that can solve problems with thousands of linear constraints and thousands of variables. 

1. The Size and Complexity of VMIN 

 Because the complexity of even relatively small problems has the potential of 

taxing the model to a point that prevents it from converging to a solution, we deliberately 

choose to focus on one factor column to solve.   Equations from C3 in VMIN correspond 

to a total of n equations—one for each run in the design.  Because m is the targeted 

column, it contains the only set of variables in the problem—one for each level of the 

factor m.  We illustrate with a linear equation for C3, where the targeted (shaded) column 

is m = 3 and run number is i = 2.  If we set n = 5 runs, there will be five value levels, 

which the variables ,
m

i jY , j = 1, 2, 3, 4, 5 represent in the shaded column of  

Table 13.  Column (k#) and row (n#) labels in the table are for ease of reference. 

Table 13.   We present how the parameters of a design and the design’s initial values 
translate into the constraints in VMIN to optimize the values of the targeted 

variable column (m = 3, k = 4, n = 5), where value levels for column 3 remain as 
variables and all other values are fixed. 

 k1 k2 k3 k4

n1 3 4
3

1, jY 4

n2 4 2
3

2, jY 5

n3 1 3
3

3, jY 2

n4 2 5
3

4, jY 1

n5 5 1
3

5, jY 3

The constraint for this instance of C3 is 3 3 3 3 3
2,1 2,2 2,3 2,4 2,5 1Y Y Y Y Y+ + + + = .  We see in 

this equation that only one of the variables may equal one—that is, only one value level 

from factor 3 can be assigned to the second run of the experiment. 
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The following discussion explains the constraints involved in the linear 

formulization of the problem.  For constraints C1 and C2, we consider 

1 5 1 3
2 2

nx + +
= = =  and the fixed values for columns k1, k2, and k4 of the initial design 

to construct the following pseudo expression for mapv . 

( ) ,
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Constraints for C3 ensure that each run has exactly one value level assigned. 
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Constraints for C4 ensure that each value level is assigned exactly one time. 
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Finally, constraints for C5 ensure that each binary variable assumes only the value of 1 or 

0.  It requires a set of two constraints for each variable. 

{ }, 0,1 ,m
i jY i j∈ ∀  
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 VMIN constraints become more complex as n and k increase.  There are 25 binary 

variables, 1 continuous (objective) variable, and 66 constraints for this relatively small 

design.  The size of the problem increases quadratically in the dimensions.  Consider a 

problem n = 33 and k = 11.  The problem now involves nearly 1,100 equations and 

almost 1,000 binary variables to determine an optimal arrangement of value levels for 

just one factor, m.  The solution is a subset of variables of size n, each equaling one, and 

the remaining n(n – 1) variables being zero. 

2. Applying RLH and Florian’s Method to Initiate VMIN 

 Random Latin hypercube (RLH) generation and Florian’s correlation reduction 

method provide an excellent initial solution to VMIN.  Preliminary computations to 

support an optimization process are categorized as heuristic algorithms—methods to 

reach suboptimal solutions (Bertsimas & Tsitsiklis, 1997). 

A good initial solution aids the optimization routine to solve the problem more 

quickly and with a greater chance of reaching a low mapv .  In our process, we obtain a 

good initial solution by quickly generating many RLHs—through k random permutations 
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of the first n natural numbers—and selecting the one with minimum mapρ .  Then, we 

iteratively apply Florian’s (1992) proven correlation reduction method to create an FRLH 

that serves as the starting solution for VMIN.  In practice, for designs of the scale in this 

paper (or a little larger), it takes only seconds on a modern desktop processor to generate 

hundreds, or even thousands, of RLHs for designs with scores of variables.  The FRLH 

improvement on the best RLH usually takes a few minutes.  It typically takes on the order 

of a few hours to generate the final design—which likely requires several iterations of 

VMIN.  Additional columns can be added by appending a new random column and then 

iteratively applying VMIN.  For the size of the experiments we discuss, it usually takes 

on the order of tens of minutes to optimize the new column. 

 Table 14 shows a design with n = 17 runs and k = 7 factors.  The associated 

objective value, V, for the initial design corresponds to 0.066mapρ = .  Table contents are 

the actual levels for the column factor for each run.  There are 172 = 289 variables for 

each specific factor, m, in this problem:  6 6 6 6 6 6
1,1 1,2 12,4 12,5 17,16 17,17, ,..., , ,..., ,Y Y Y Y Y Y .  Table 15 

illustrates the initial binary value for 6
2,4 1Y = —meaning that the actual level value for 

factor 6 on the 2nd run is 4, and reciprocally 6
2, 0jY =  for all 4j ≠ . 
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Table 14.   This n = 17, k = 7 design, 0.066mapρ = , is a result from generating 
numerous RLHs, selecting the design with the least nonorthogonality, and 

applying Florian’s method iteratively.  It is the initial design before using VMIN. 

 k1 k2 k3 k4 k5 k6 k7
n1 15 2 7 5 8 9 15
n2 17 15 11 11 6 4 14
n3 5 7 8 14 2 16 4
n4 13 10 1 9 15 13 5
n5 11 6 17 3 12 15 1
n6 3 14 14 13 10 6 10
n7 7 16 2 6 11 14 12
n8 8 9 13 1 16 7 8
n9 1 11 5 2 7 8 6
n10 14 13 3 15 5 11 3
n11 10 5 12 10 4 1 2
n12 2 1 4 8 3 2 11
n13 4 3 6 16 17 12 16
n14 6 12 16 17 13 10 9
n15 9 17 10 4 9 3 13
n16 16 4 9 12 14 5 7
n17 12 8 15 7 1 17 17

 For a more expansive look into this example, we continue to focus on column  

m = 6 of the initial design.  The initial ,
m

i jY  solution set for m = 6 is more easily seen in 

Table 15 as a two-dimensional display of variable values that show exactly one factor 

level (j) assigned to each run (n).  This matrix of zeroes and ones corresponds to the 

values in column vector (k6) from Table 14. 
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Table 15.   Binary variable values for factor m = 6 in the initial design show the 
sparseness of this single column optimization problem.  A set of these variables 

corresponds to each factor. 

m = 6 j1 j2 j3 j4 j5 j6 j7 j8 j9 j10 j11 j12 j13 j14 j15 j16 j17 
n1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 
n2 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 
n3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 
n4 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 
n5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 
n6 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 
n7 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 
n8 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 
n9 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 
n10 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 
n11 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
n12 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
n13 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 
n14 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 
n15 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
n16 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 
n17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

We apply VMIN to target factor m = 6 to improve V.  In the following paragraphs 

we discuss the root mean square (Owen, 1994) to explain the rationale for selecting m = 6 

as the column to optimize.  VMIN focuses on the problem of populating the above matrix 

with ones in the appropriate cells, and zero elsewhere.  VMIN considers each of the 289 

variables in the problem, and through the Cplex solver, determines a solution (i.e., an 

arrangement of values of “1”s in the matrix) that minimizes V to within a user-specified 

tolerance of the optimal solution. 

Tolerance is the difference between the notional optimal value of the objective 

function and the actual computed value, divided by the notional value, and multiplied by 

100%.  Common practice sets tolerance at 10%, but we use 1% in VMIN to approach 

orthogonality.  We adjust tolerance as design dimensions near saturation. 
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3. Iterative Application of VMIN 

 Iterative application of VMIN constructs the entire design.  Solving one instance 

of VMIN guarantees an optimal solution for the current factor of interest.  However, our 

simplification of the optimization problem to one column leaves us with a nonoptimal 

solution for the overall DOE problem.  To reach orthogonality or near orthogonality 

requires a deliberate process.  Therefore, after determining the best value levels for one 

column, we select a new column to optimize.  We repeat this process until we have an 

NOLH, or there is no further progress. 

 Selecting the next column to optimize can become complex.  There are other 

methods for selecting the next column to optimize, such as selecting a column that is 

associated with mapρ , but this value exists for at least one other column.  It is possible 

that even more than two columns are associated with mapρ .  Instead, following Owen 

(1994), we use root mean square (rms) as the measure for selecting the next column to 

optimize.  Computing rms for a column m involves summing the squared correlation 

coefficients between m and all other columns in the design, and dividing the total with the 

number of unique column pairs, which yields 

( )
2

2

1

k

lm
l m

rms m
k

ρ
ρ ≠=

−

∑
, 

where lmρ  is the correlation coefficient in (1.1), and k is the number of columns in the 

design.  We select the column with the largest rms as the one to optimize.  The greatest 

rms identifies the column that has, on average, the largest squared correlation with any 

other column, and is therefore the most problematic, relative to all other columns.  

Selecting this column for optimization increases the chances for reducing the design’s 

overall nonorthogonality.  In practice, this approach has proven straightforward, tractable, 

and successful.  Although iterative column optimization may not terminate at a solution 

that equates to the lowest possible mapρ , it provides a near optimal solution that has a 

very good chance of meeting NOLH criteria. 

Numerous difficulties emerge when using optimization to solve the complete 

DOE problem.  It is a primary reason that scientists have sought other methods for 
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developing experimentation schemes.  Our presentation of a solution for m = 6 in  

Table 15 offers a glimpse of the issues that an optimization approach faces.  The two-

dimensional matrix presents the VMIN attempt to position “1”s where no two entries are 

in the same row or column.  Taking this same problem vertically for each factor further 

complicates the arrangement of “1”s.  A new restriction that no two-factor (m) matrices 

should have the same run (n) and level (j) cell filled complicates the problem sufficiently 

to challenge the most robust optimization schemes.  Such a problem requires m sets of n2 

variables moving simultaneously.  The resulting problem is nonlinear and nonconvex. 

Restricting the optimization problem to one factor at a time allows us to transform 

it into a linear one.  Our formulation offers a means for reaching a focused solution that 

guarantees an optimal solution for any given column, m.  The method that we employ to 

generate an initial solution is grounded in optimization theory and practical experience.  

Our iterative application of VMIN methodically reduces mapρ  to an acceptable level.  

Short of optimality, creation of new designs that meet NOLH criteria satisfies our study 

goals.  This method breaks free from previous constraints to produce NOLHs in design 

dimensions that other approaches do not. 

D. NEW DESIGNS FROM VMIN 

 This section describes the full impact of combining FRLH and optimization into a 

new methodology.  Their synthesis produces new NOLH designs.  We quantify our 

method’s effectiveness and present excerpts of new NOLH designs that are not possible 

to construct using earlier techniques.  The relative ease and flexibility of this technique 

make it an attractive option for constructing new and efficient computer experiments. 

 As we previously stated, small NOLH designs ( 50n ≤ ) are difficult to generate if 

3
nk ≥ .  Cioppa’s (2002) method generates millions of LHs before selecting one that 

warrants application of Florian’s method.  In practice, Florian’s method successfully 
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produces NOLH designs for 50n >  and 
3
nk ≤  with a single RLH generation,8 but 

cannot guarantee an NOLH for dimensions that violate these combinatorial conditions. 

 Our optimization program is a complement to FRLH.  It not only provides a 

means to create NOLH designs with dimensions 50n ≥ , 
3
n k n≤ < , it covers design 

dimensions for any n, and k n→ .  Designs in Appendix A demonstrate our technique’s 

utility. 

 Cioppa and Lucas (2007) discuss a number of OLH and NOLH designs and 

compare their orthogonal properties with the average correlation measure of simple LHs.  

An excerpt from their article shown in Table 16 shows their dimensions and 

corresponding orthogonal characteristics. 

Table 16.   An excerpt from Cioppa and Lucas (2007) compares RLHs and Cioppa’s 
(2002) OLH and NOLH designs with respect to their orthogonal characteristics. 

Design Max Pairwise 
Correlation 

33
11O  0 

Best 33
11N  0.0234 

Mean 33
11R  0.4015 

65
16O  0 

Best 65
16N  0.0219 

Mean 65
16R  0.3194 

129
22O  0 

Best 129
22N  0.0015 

Mean 129
22R  0.2332 

Gaps in the current OLH and NOLH library exist because of the rigidity of 

dimensional constraints.  To achieve orthogonality, Cioppa’s existing convention for 

design dimensions requires an increase in the number of runs from 33 to 65 when the 

                                                 
8 In practice, one RLH generation is nearly always sufficient to produce a NOLH using Florian’s 

method.  However, choosing the RLH with the least maximum absolute pairwise correlation, from up to 
1,000 RLHs, helps increase the chances of producing an NOLH. 
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number of factors increases from 11 to 12.  In this example, there is a breach in the OLH 

and NOLH library for designs that have less than 17 runs and 1 7k≤ ≤ , or for designs 

18 32n≤ ≤  and 8 11k≤ ≤ . 

 Efforts to produce smaller designs benefit from starting with a “good” initial 

design (Tang, 1998).  We consider a starting design for an 8 × 3 RLH, which violates our 

rule of thumb; 8 50n = <  and 83 2.67
3

k = > = .  There are no known catalogued OLH or 

NOLH designs with these dimensions.  We generate an FRLH design, which has a mapρ  

equal to 0.0476, shown on the left side of Table 17  Although the FRLH meets Ang’s 

near-orthogonality criteria, we employ VMIN.  We use the FRLH design as a heuristic 

solution to initiate VMIN.  VMIN optimizes the third column resulting in a fully 

orthogonal design, 8
3O :  0mapρ =  and a condition number of 1.0.  We add the final design 

on the right-hand side of Table 17 to the OLH library. 

Table 17.   Results from a small design after iterative application of Florian’s method 
on the left-hand is not an OLH design.  It can be used as the initial design for 
VMIN.  The final design is orthogonal, as shown on the right-hand design. 

•  Initial FRLH 
Design: 0.0476mapρ =  
k1 k2 k3 
3 8 7 
1 4 6 
6 7 3 
4 2 2 
8 6 5 
5 1 8 
7 3 4 
2 5 1 

•  Final Orthogonal 
Design: 0.0mapρ =  

k1 k2 k3 
3 8 2 
1 4 4 
6 7 6 
4 2 1 
8 6 5 
5 1 7 
7 3 3 
2 5 8 

 We summarize our methodology to construct new designs in the following steps 

and present it graphically in Figure 9. 

Step 1:  Consider the dimensions, n and k, for the desired design. 

Step 2:  Determine if OLH or NOLH designs exist for desired dimension: 
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If OLHs or NOLHs with the same design dimensions are available, use them.  As an 
alternative, determine if it is possible to construct a new design based on  
previous methods. 

If the designs do not exist in the library, or design dimensions do not meet OLH and 
NOLH conventions, go to Step 3. 

Step 3:  Determine if it is necessary to apply the combined technique or only  
Florian’s method. 

If 50n >  and 
3
nk < , generate one or more RLHs and iteratively apply Florian’s method.  

Upon termination, the resulting design will likely possess NOLH properties—if not, try a 
few more.  If unsuccessful after a few iterations, go to Step 6. 

If 50n >  and 
3
n k n≤ < , or 50n ≤ , go to Step 4. 

Step 4:  Generate up to 1,000 RLHs and select the design with the minimum mapρ  and 
designate it initialX . 

Step 5:  Iteratively apply Florian’s method on initialX  until mapρ  does not improve.  
Designate this improved design as HX ; the result of a heuristic approach. 

Step 6:  With HX  as a start point, implement VMIN iteratively. 

Step 7:  Record the resulting design.  If the design is unsatisfactory, return to Step 4 and 
repeat with new RLHs. 

 A departure from previous techniques, we find that our methodology usually 

uncovers more than one design from which to choose.  Time permitting, an experimenter 

can generate a number of candidate NOLHs, and then use criteria other than mapρ , such 

as space-filling properties, to select the NOLH that best meets the experiment’s 

requirements.  Some methodologies are deterministic in their final designs, such as 

Steinberg and Lin (2006) and Ang (2006), leaving the experimenter with only a single 

choice at their limits.  The opportunity to quickly produce different NOLH designs, with 

few dimensional constraints, is an important strength of our method.  Figure 9 outlines 

the steps to achieve these designs. 
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Figure 9.   This flow chart presents the combined process for matrix transformation and 
optimization of an MIP to construct an OLH or NOLH design. 

 We demonstrate our methodology with a design for 14 runs and 7 factors.  The 

resulting designs are in Table 18. 

Step 1:  The desired design has dimensions n = 14 and k = 7. 

Step 2:  These dimensions do not conform to OLH or NOLH convention, which 
prompts the experimenter to go to Step 3. 

Step 3:  Because 14 50n = <  and 77 0.50 0.33
14

kk
n

= ⇒ = = > , Florian’s method 

alone will not likely result in an NOLH design.  Go to Step 4. 

Step 4:  Using scripts that we developed in R software, we generate 1,000 RLHs and 
select the design with the minimum mapρ  and designate it initialX .  The resulting 
design has mapρ  equal to 0.367 and condition number 4.489. 

Step 5:  Iteratively applying Florian’s method on initialX  results in a design with a 

mapρ  of 0.099.  We designate this heuristic as HX  and present it on the left-hand side 
of Table 18. 
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Step 6:  Iterative implementation of VMIN on HX  results in an NOLH design with 

mapρ  of 0.033 and a condition number of 1.134.  We show the final design on the 
right-hand side of Table 18. 

Step 7:  We record this NOLH, 14
7N , as an entry into the NOLH library. 

Table 18.   The result from iterative application of Florian’s method on a randomly 
generated n = 14, k = 7 design is the initial design for VMIN, as shown on the 
left-hand side of the table.  It does not meet NOLH orthogonality criteria.  The 

final design for n = 14, k = 7 after VMIN is a new NOLH design, presented on the 
right-hand side. 

Initial FRLH Design: 
0.099,  condition( ) 1.46t

map X Xρ = =   

Final Nearly Orthogonal Design: 
0.033,  condition( ) 1.13t

map X Xρ = =  

K1 K2 K3 K4 K5 K6 K7  K1 K2 K3 K4 K5 K6 K7 
1 8 1 10 9 13 13  8 4 5 3 9 13 13 
6 9 13 13 14 8 6  7 5 1 9 14 8 6 
8 12 3 7 3 7 2  14 3 9 7 3 7 2 
4 14 10 11 1 5 8  4 7 3 12 1 5 8 

13 4 2 4 11 2 10  3 1 11 14 11 2 10 
10 7 14 2 8 11 7  10 2 14 4 8 11 7 
7 1 9 14 2 3 9  13 8 4 6 2 3 9 
5 5 12 5 5 14 5  2 6 8 10 5 14 5 

12 6 7 9 10 4 3  5 9 2 1 10 4 3 
9 10 5 12 13 12 4  11 12 6 11 13 12 4 

11 2 8 8 6 10 14  12 13 7 13 6 10 14 
3 3 4 1 7 6 1  6 14 13 8 7 6 1 

14 13 6 6 4 9 11  1 11 10 2 4 9 11 
2 11 11 3 12 1 12  9 10 12 5 12 1 12 

  
We reiterate that this process is readily repeatable—using new random number 

streams to yield a new starting RLH—and develop many different NOLHs with our 

required dimensions, perhaps using other criteria, such as space-filling properties or 

consideration for higher order terms (interactions, quadratic, etc.) to select the  

best design. 

An extension of this example demonstrates the power and flexibility of our 

combined methodologies.  To develop 14
12N  we use a new random stream to build a new 

n = 14, k = 10 RLH design, and iteratively apply Florian’s method to produce a heuristic 

solution to initiate VMIN.  An 14
10N  design was possible with this method.  Adding one 
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new column at a time from a random permutation of the value levels and applying 

VMIN, we construct the nearly saturated NOLH design, 14
12N , shown in Table 19. 

Table 19.   The 14
12N  developed by RLH, FRLH, and VMIN emphasizes the flexibility 

of our methodology to construct any number of different NOLH designs (to 
include saturated ones).  Note that none of the columns of this design are identical 
to the design on the right-hand side of Table 19.  It shows that this new design is 
not merely an extension of the n = 14, k = 7 design, although our technique can 

certainly extend smaller designs. 

Nearly Saturated NOLH Design: 
0.046,  condition( ) 1.33t

map X Xρ = =  
K1 K2 K3 K4 K5 K6 K7 K8 K9 K10 K11 K12

3 6 1 6 14 5 5 6 10 6 14 6
1 7 9 10 5 14 2 8 8 14 4 4

12 8 3 14 4 7 13 2 11 13 8 11
9 5 4 3 3 2 3 12 6 9 2 14

10 1 7 1 10 8 14 9 7 12 6 2
11 12 10 13 12 1 6 11 9 7 3 1
6 3 14 11 11 11 12 10 4 4 7 13
4 11 11 7 7 6 9 14 12 11 13 12
2 4 5 12 9 4 7 4 3 5 5 8

14 2 12 8 6 9 1 5 13 3 11 7
7 10 13 4 2 3 8 1 2 8 12 5
5 13 8 2 8 10 11 3 14 2 1 9
8 9 2 9 1 12 10 13 5 1 10 3

13 14 6 5 13 13 4 7 1 10 9 10

Certainly another approach would be to use the initial n = 14, k = 7 design from 

Table 18 and add one column at a time, but starting at this low number of variables is 

cumbersome.  We chose to be aggressive and began with an k:n ratio equal to two-thirds, 

violating our “one-third” rule of thumb.  The flexibility of saturated designs permits 

experimenters to take any subset of columns to develop a new design, when for example, 

more degrees of freedom for error in a linear fit is desirable.  We complete our 

development of this design with a final application of Florian’s method to determine if an 

improvement is possible.  There is no improvement in mapρ  and we enter 14
12N  into the 

NOLH catalogue. 
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 Our method requires relatively little time and resources.  We construct the design 

using R software and GAMS.  Generating 1,000 RLHs in R requires only seconds for a 

14 × 10 design matrix.  Applying Florian’s method iteratively takes a similar amount of 

time.  In practice, generation of 1,000 small RLHs, selection, and administration of 

Florian’s method are immediately sequential and involves less than two minutes.  The 

GAMS program requires the most time, but current applications for small designs show 

that it is not uncommon for VMIN to reach completion within five minutes. 

 We use the largest of the “small” catalogued OLH and NOLH designs—n = 33 

and k = 11—to illustrate the minimal resource investment for our methodology.  

Generating 1,000 RLHs, we create an FRLH with mapρ  equal to 0.0307 and a condition 

number of 1.156, which meets our NOLH criteria.  We complete this process in less than 

30 seconds on a standard desktop processor.  Applying VMIN is not necessary to meet 

NOLH criteria for a 33 × 11 design matrix. 

 As a test case, we develop a saturated design that does not adhere to OLH or 

NOLH dimensional constraints:  n = 33 and k = 32 (see Appendix A).  Approaches from 

Ang (2006), Cioppa (2002), and Ye (1998) do not develop designs to explore 32 

variables in so few runs.  Ang (2006) requires 65 runs to address 32 variables.  Cioppa 

(2002) requires a sample size of 513, while Ye (1998) requires an increase in the number 

of runs to 131,073, for m = 17.  Steinberg and Lin (2006) recognize that their 

methodology faces limitations in design dimensions.  A comparison of the methods to 

construct a design to explore 32 factors is in Table 20.  The comparison shows the 

advantages of our new technique over these other construction methods. 
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Table 20.   A comparison of different approaches to develop a design that can explore 
32 variables shows that our new S-NOLH design requires the least number of 

runs, and is therefore most efficient.  Other approaches can theoretically develop 
experimental designs to explore 32 or more variables, but to the author’s 

knowledge, none are currently in the catalogue of OLH and NOLH designs. 

k = 32 Ye Cioppa Ang Steinberg and Lin New 
Required n 131,073 513 65 64 33 

mapρ  0 0 0 0 0.0435 

 In the process of developing an 33
32N  design, we also generate three new, 

individually unique designs for the same dimensions, each meeting orthogonality criteria.  

The best design has 0.0435mapρ = .  Two other designs have mapρ  values of 0.0465 and 

0.0451.  There are nine other new and different designs that do not meet NOLH criteria; 

they possess values of mapρ  between 0.05 and 0.06.  Although other techniques can 

theoretically develop a design to explore 32 or more variables, such efforts (e.g., Ang, 

2006 and Steinberg & Lin, 2006) result in exactly one  

such design. 

 Our recent discussion traces known design dimensions, but the flexibility of our 

technique results in previously unknown OLH and NOLH designs.  We begin with 

Cioppa’s 17
7O design as a start point.  Adding a new column consisting of an ordered 

vector of 1, 2,…, 17, we apply VMIN.  The result is a new orthogonal design, 17
8O .  A 

repetition of this process produces another completely orthogonal design, 17
9O .  The 

author knows of no other method that produces an OLH of this dimension.  Our extension 

of this process does not produce completely orthogonal designs, but meets nearly 

orthogonality criteria for an 17
13N  design.  Beyond 13 factors, we apply our full 

methodology to produce an 17
14N  design with 0.0466mapρ = .  We also initiate a new 

FRLH, discarding Cioppa’s 17
7O , and create a fully saturated NOLH, 17

16N , with 

0.0491mapρ =  as shown in Table 21.  Although we do not use Cioppa’s original 17
7O  as a 

basis, the 17
16N  design still retains good properties, such as space filling (see Appendix B). 
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Table 21.   This is a new design from an original FRLH for 17 runs.  We extend the 
number of factors to explore until it is fully saturated.  It allows an experimenter 
to explore 16 factors within 17 runs.  The k:n ratio of 0.94 is large and makes the 

design a good screening plan. 

k1 k2 k3 k4 k5 k6 k7 k8 k9 k10 k11 k12 k13 k14 k15 k16
n1 5 9 13 7 15 1 15 6 5 2 7 11 1 9 14 3
n2 13 14 1 16 12 5 6 3 11 5 6 1 6 7 3 13
n3 14 2 6 9 9 2 16 8 9 17 11 17 10 3 4 12
n4 12 13 16 10 11 17 9 1 17 15 12 13 2 13 8 7
n5 4 15 11 15 6 12 7 16 6 6 15 14 4 1 10 15
n6 9 4 15 17 14 8 13 15 10 7 17 3 15 14 6 9
n7 10 7 14 3 10 4 4 17 13 14 3 4 3 11 11 17
n8 8 12 7 1 13 13 14 4 2 12 14 2 12 5 13 14
n9 17 6 8 2 3 15 11 13 7 1 10 7 5 10 2 5
n10 1 3 2 6 17 14 3 10 8 9 9 15 9 15 5 11
n11 2 17 3 8 1 6 17 11 12 11 8 9 11 17 7 8
n12 16 11 4 12 7 7 2 12 3 16 13 8 7 12 16 1
n13 15 10 12 13 8 11 10 7 4 4 1 16 16 16 15 16
n14 6 1 5 14 5 16 12 9 15 10 4 5 8 4 17 6
n15 3 8 17 11 4 10 5 5 1 13 2 6 13 6 1 4
n16 7 5 10 4 2 3 1 2 14 3 16 10 14 8 12 10
n17 11 16 9 5 16 9 8 14 16 8 5 12 17 2 9 2  

 We complete our examples with a design that does not follow current size 

conventions.  We seek a design that explores 20 factors within 25 runs.  The k:n ratio is 

0.80.  There are no similar designs to use as starting templates.  Neither n nor k is a factor 

of two.  After initiating a new FRLH, we produce a new NOLH design, 25
20N , 

0.0439mapρ =  within 10 minutes using VMIN.  After iteratively adding columns we 

produce a final S-NOLH ( 25
24N ), shown in Appendix A.  An alternative for extending an 

24
23N  to become an 25

24N  is to add a new row (for the new level 24th) to 24
23N and apply 

Florian’s method and then VMIN to produce an NOLH.  Taking the new NOLH (now 
25
23N ) we add a new column and again apply Florian’s method and VMIN, respectively.  

The result is a new saturated NOLH for 25
24N .  The flexibility of this alternate process is 

an important attribute of this method. 

 Table 22 compares a few design dimensions from different construction 

methodologies.  It is evident that our new method of combining FRLH and mixed integer 

programming (FRLH-MIP) has the flexibility to create unique designs that cater to the 
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experimenter’s needs.  As previously mentioned, Steinberg and Lin (2006) require 64 

runs to explore 32 factors, while FRLH-MIP uses 33 runs (Appendix A).  This short 

discussion encompasses three unique design combinations for each of the given 

techniques.  The new designs are saturated and further fill the OLH and NOLH library. 

Table 22.   A summary of techniques from Cioppa, Ang, Steinberg and Lin, and our 
new method shows that the FRLH-MIP method is a viable option to extend the 

library of OLH and NOLH designs.  A label of “NA” designates dimensions not 
currently available from the technique. 

  Cioppa Ang  Steinberg 
and Lin New 

n 17 17 16 17 
k 7 8 12 16 
mapρ  0 0 0 0.0490 

      
n 33 33 NA 33 
k 11 16 NA 32 
mapρ  0.0234 0 NA 0.0451 

      
n 65 65 64 64 
k 16 32 56 63 
mapρ  0.0219 0 0 0.0443 

E. SUMMARY 

 Combining FRLHs with an optimization routine to construct new designs 

provides the freedom to create the variety of orthogonal and nearly orthogonal design 

dimensions that we have discussed.  The capability to produce many different NOLH 

designs with the same dimensions introduces great possibilities in stacking and crossed 

designs.  With a choice of different designs, possessing acceptable nonorthogonality 

traits, scientists can use other measures to discriminate among them.  The 33
30N , 33

31N , and 

33
32N  designs in Appendix A are examples of this flexibility.  Examining each design 

shows that they are not dependent on each other (i.e., the 33
31N  design is not just a  

one-column extension of 33
30N ).  Eliminating one column from 33

31N , or two columns from 

33
32N , creates three different 33

30N  designs.  In comparison with the effort that other 
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methods require to produce one design, the undertaking for our technique is relatively 

trivial.  Coupled with its flexibility in design dimensions, our approach provides scientists 

with a new tool to fill much of the OLH and NOLH library. 
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V. MANAGING MIXED-FACTOR, MIXED-LEVEL 
EXPERIMENTS WITH A NEW DESIGN METHODOLOGY 

In accordance with the LHS construct (McKay et al., 1979), OLH and NOLH 

designs assume that all variables are continuous.  Frequently this assumption is false.  

Many experiments include a number of discrete variables that do not necessarily have the 

same number of value levels.  Converting (by rounding) the actual values of these 

discrete variables onto a raw OLH or NOLH design, especially when there are a small 

number of design points, often results in an overall design with poor orthogonality 

properties.  We designate these types of designs as mixed-factor, mixed-level  

(MFML) experiments. 

MFML experiments diminish the advantages of OLH and NOLH designs.  In this 

chapter, we explore means to mitigate these disadvantages and restore near orthogonal 

properties.  The foundation for creating a nearly orthogonal MFML design is the set of 

continuous variables from which we produce an NOLH using our new techniques.  Our 

study exploits the dimensional flexibility of our new designs, by combining them with 

stacking methods and intelligent application of proven design techniques.  The resulting 

MFML designs retain much of the orthogonality properties of the basic NOLH, thereby 

maintaining their utility.  In practice, this approach has worked well for creating an 

efficient design for a problematic set of factors. 

A. THE BASE CONTINUOUS DESIGN 

The set of continuous variables in the experiment determines the base design and 

is the foundation of the MFML methodology.  Integer variables with a large number of 

value levels may also be part of the base design.  The complete set of variables in the 

base design provides the flexibility in our methodology.  Because the number of runs for 

this subset of variables can usually be set to any number n, the base design can match the 

design for the set of discrete variables as needed. 

Previous chapters describe the ease of generating an OLH or NOLH from a set of 

continuous variables with a confluence of one or more techniques.  The lone “hard” 

constraint with this methodology is that n k> .  However, some analysts may choose to 
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avoid saturated designs.  Space-filling characteristics may be an important feature for the 

experiment.  The analyst may also decide that a design where 0.33k
n
≤  is more 

appropriate, or desire a greater number of degrees of freedom.  No matter the method for 

selecting n, it presents an initial restriction.  We designate this initial restriction in the 

number of runs as In , where In k> , and use it to guide constructing a separate design for 

the set of discrete variables. 

B. DISCRETE INTEGER VARIABLES AND STACKING METHODOLOGY 

The set of discrete variables presents difficulties for creating a LH design that 

possesses an acceptable mapρ .  Often, discrete integer variables do not have the same 

number of value levels.  In such cases where sample size is a constraint, there may be 

little chance for creating a complete balanced design for them (Box et al., 1978: 

Satterthwaite, 1959).  We first consider cases when there is a single discrete integer 

variable mixed with an experiment that predominantly contains continuous variables.  

Our method also handles subsets of discrete variables, each with differing numbers of 

value levels.  A part of this process uses stacking methods—i.e., permuting the columns 

and appending additional rows or another design (Cioppa & Lucas, 2007).  The full 

methodology includes stacking two or more designs, adding columns for binary factors 

through random permutations of {0, 1}, and crossing quantitative designs with designs 

for qualitative variables.  The goal for systematically constructing an MFML experiment 

is to create a nearly orthogonal random balanced design (Satterthwaite, 1959). 

1. One Subset of Discrete Variables with a Common Value Level 

We examine the set of discrete variables and identify the value level, which we 

denote as i , for each variable, 1, 2,...,i w= .  If it is reasonable to use a common value 

level  (i.e., all discrete variables have the same number of value levels), it is much 

easier to generate a total MFML design with nearly orthogonal properties.  Given that  

is greater than the number of discrete variables, d, we apply similar techniques for 

creating an NOLH from continuous variables.  From empirical study, cases in which 
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10 d≥ ≥  show that our methods often result in a design with an acceptable mapρ .  For 

cases in which d< , we split the set of discrete variables into smaller subsets such that 

d>  is true for each new subset, permitting the application of previous techniques to 

create an NOLH.  In the next section, a small example demonstrates the significance of 

establishing these constraints on . 

2. Addressing More Than One Subset of Discrete Variables 

For experiments containing several discrete variables with varying numbers of 

value levels, we group the discrete variables into subsets with corresponding common 

's .  Subject matter expertise and the analyst’s reasoning can simplify the number of 

subsets with which to work.  The concept for developing a complete design with these 

disparate subsets of discrete variables is to incorporate each subset design as an LH into 

the overall design.  Figure 10 illustrates this idea later in the section. 

We identify w subsets of discrete variables and designate the discrete subset 

designs as 1 2, , , wDV DV DV… .  Each subset has a corresponding number of value levels, 

1 2, , w… , from which we determine the least common multiple (LCM) and designate it 

as DVn , which is the minimum total number of runs for all discrete variables in the 

design.  For each i , there exists an integer value ib , such that ,  1, 2,...,i i DVb n i w• = = , 

and determines the initial number of stacks for each iDV .  We adjust the number of 

stacks to match In  if I DVn n< , or increase In  if I DVn n> . 

The intent of creating a balanced design LH (Box et al., 1978; Satterthwaite, 

1959) drives our choice for grouping discrete variables.  We contemplate i  to determine 

whether it is possible to incorporate a smaller DV within a larger DV.  For instance, we 

consider three sets of discrete variables with value levels 5, 8, and 10, thus 

40DVn LCM= = .  We denote each design as 1 2 3, ,DV DV DV , respectively.  A savvy 

analyst could reasonably, if resources permit, decide to increase the number of value 

levels for 2DV  from 8 to 10, thereby creating a larger group ( 3DV ) based on 10 value 

levels.  This simplification makes a balanced design easier to obtain for a reasonable n.  
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The experimenter matches two stacks of 1DV  within every one 3DV .  We update LCM:  

10DVn LCM= = . 

To further clarify the MFML process, we establish that the base design of 

continuous variables requires n = 40 design points, based on the original LCM.  We 

determine the final number of stacks for 1DV  and 3DV  based on n to be 8 and 4, 

respectively.  The four stacks of 3DV  act as the base stack for the eight stacks of 1DV .  A 

short program in R performs iterative random stacking of 1DV .  For each iteration of 

stacking, we append the new stack to the stacks of 3DV and compute mapρ .  The 

experimenter can limit the number of iterations to a number of trials deemed reasonable 

or a threshold for an acceptable mapρ . 

 A final generation of a base design from the remaining continuous variables 

results in an MFML design with the structure shown in Figure 10.  We note that the 

flexibility of our new NOLH designs allows the base design to adjust to the discrete 

variable designs.  For clarification, we rename 1DV  as 5DV  and 3DV  as 10DV  in  

the illustration. 

Base 

DV10

DV10

DV10

DV10

DV5

DV5

DV5

DV5

DV5

DV5

DV5

DV5

 

Figure 10.   The structure of the stacked MFML design. 

3. Formalized Stacking Methodologies 

In this section, we discuss our stacking approach as part of the MFML 

methodology.  Whereas stacking is sometimes applied to increase n, we use stacking as 
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an opportunity to improve mapρ  for the subsets and overall set of discrete integer 

variables.  A stacked design in which each design is based on randomly permuted 

columns of the original design can improve the mapρ  of the complete design, such that 

( ) ( )map mapstacked original
ρ ρ≤   (Cioppa & Lucas, 2007).  This method of stacking helps 

efforts to improve the overall design that includes the base design. 

Stacking also provides the freedom to mitigate assumptions that prove false.  Our 

discussions in the previous two sections assume ,  1, 2, ,i id i w> = … , where id  is the 

number of variables in the ith subset of discrete variables.  Another assumption is that 

DV DVn k> , where DVk  is the total number of discrete variables, 1 2DV wk d d d= + + +… , 

and that DVn k> .  When these assumptions do not hold, we use stacking methods. 

To apply stacking methods, we first establish the final number of runs for the 

experiment, n, by comparing DVn  and In :  (1) If DV In n≥ , then DVn n= ; (2) If DV In n< , 

then we take the ceiling9 of the ratio of the In  and DVn  as a modification factor, such that 

I
DV

DV

nn n
n
⎡ ⎤

= ×⎢ ⎥
⎢ ⎥

.  The number of stacks for each iDV  in the overall MFML design is 

I
i i

DV

ns b
n
⎡ ⎤

= × ⎢ ⎥
⎢ ⎥

, recalling that ib is the initial number of stacks for each subset of discrete 

variables.  We adjust ib  based on the modification factor, I

DV

n
n
⎡ ⎤
⎢ ⎥
⎢ ⎥

, if this is possible. 

 We leverage the new method for stacking from Cioppa & Lucas (2007) to reduce 

the nonorthogonality of the overall stacked design.  We generate a DV design with a 

reasonable mapρ  and permute the columns to create a “new” design—once for each 

required number of stacks, s, for the design.  Each rearranged LH is not truly a new 

design since there is a one-for-one column match in the new and original design, albeit in 

different column order.  However, the overall stacked design is different and an 

improvement in mapρ  is evident (Cioppa & Lucas, 2007).  We may permute the k 

                                                 
9 The ceiling of the value x is the smallest integer value that is greater than or equal to x. 
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columns in any of !k  ways and choose s of them to create an overall stacked design.  Put 

another way, we can choose from any of 
!k

s
⎛ ⎞
⎜ ⎟
⎝ ⎠

 stacked designs.  We select the set of new 

designs based on a desire to reduce the mapρ  of the stacked design.  Another simple 

program in R allows a search for a set of “new” designs that will stack into an overall 

discrete integer design with an acceptable mapρ .  After selecting the set of “new” designs 

to stack, we see that there are !s  ways of stacking them.  Each restacked design from the 

same set of “new” designs results in the same overall mapρ .  These findings provide a 

flexibility to reduce nonorthogonality inherent in a singe subset of discrete variables in 

MFML experiments. 

 Laterally appending a stacked design for one subset of discrete variables to 

another subset’s discrete variables design may increase mapρ  for the joined design, 

JoinedDV .  To minimize mapρ  for the joined design, we hold one set of stacked designs as 

the base stack, BaseDV , while randomly restacking the subset of interest, InterestDV .  

During random restacking, InterestDV  maintains its mapρ , but its correlation with BaseDV  

changes, thereby changing mapρ  for JoinedDV .  We continue restacking InterestDV  until mapρ  

for JoinedDV  is acceptable or ceases to improve.  Since mapρ  for the joined design will not 

be better than the worse mapρ  of the two DVs, it is reasonable to set mapρ  from the worse 

of BaseDV  and InterestDV  as a threshold.  The joined design is the new base stack.  We 

incorporate a new InterestDV  in the same manner until all discrete variable subsets are in 

the base stack. 

In the case of a single integer variable, a simplistic approach reaps significant 

benefits.  We randomly permute a vector of the possible values of the variable; the vector 

consists of each value repeated exactly the same number of times that there would have 

been stacks.  For instance, a single variable with 4=  levels and n = 20, results in a 

vector consisting of the values 1, 2, 3, and 4, each repeated 20 5
4

n
= =  times, 
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( )1,1,1,1,1,..., 4, 4, 4, 4, 4x = .  The analyst generates a new random permutation of the 

vector, appends it to BaseDV , measures mapρ , and compares it with a specified correlation 

criterion.  A maximum number of iterations may also be a criterion.  A modification of 

the R program that handles restacking helps in this process.  We find the single integer 

variable approach useful when there are few value levels ( 10≤ ) and applicable when 

discrete variables cannot be grouped. 

Our overall design strategy includes known design techniques.  Centered designs 

and two-level factorial designs are often part of MFML experiments.  Additionally, a 

library of orthogonal arrays (Sloane, 2006) offers a number of catalogued orthogonal 

arrays (OAs) that may match the requirements for an MFML experiment.  For readers 

interested in more details about OAs, Hedayat et al. (1999) have a comprehensive 

discussion of theory and applications.  A group of these OAs already contains designs 

with factors that have varying numbers of value levels. For instance, the library lists an 

MA.12.2.4.3.1 design.  The nomenclature represents a mixed orthogonal array (MA) that 

has 12 runs, 4 two-level factors, and 1 three-level factor.  These designs are very specific 

to the types and mixture of factors they can address. 

Many cases may occur for subsets of discrete variables.  We do not attempt to 

enumerate them and leave it to the analyst to best simplify the experiment, while using 

our guidance for combining design methods.  The goal for this methodology is to develop 

a design that can explore the main effects of each factor.   

Once the final base stack design is complete, the experimenter can apply our new 

techniques or other known methods to create the base design from the set of continuous 

variables.  The total number of runs is still n.  The number of variables for the base 

design is CV DVk k k= − .  We expect to benefit from the flexibility of our new designs if 

known OLH and NOLH designs cannot accommodate CVk . 

C. COMBINED AND STACKING METHODOLOGIES 

This section describes our procedure for logically combining stacking 

methodologies and proven design schemes to produce designs with acceptable 

nonorthogonality measures.  Because there are many possible types of variables and 
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different numbers of value levels that can occur, we discuss our general methodology for 

a fairly complex case.  A complex case involves a design that has continuous variables, 

discrete variables—each set with a different number of value levels and/or single DV that 

has a number of value levels that matches neither of the DVs’ sets.  We include a flow 

chart as a template for the MFML methodology.  Description of a student thesis that 

employed this process illustrates its utility. 

1. Steps for Creating a Mixed Factor, Mixed Level Design 

This section lists the general steps to guide the creation of an MFML design with 

acceptable nonorthogonality.  In their present form, these steps are helpful, but require 

more specificity.  Experience and reason are required to determine how to best employ 

the methodology for each new case. 

Step 1:  Determine the sets of discrete and continuous variables.  Set In  to meet 
requirements for all variables, such that 1In k≥ + . 

Step 2:  Group the set of DVs into subsets that have common numbers of value levels 
( i ).  Simplify subsets and i  as logic dictates. 

Step 3:  Split subsets of DVs if i id<  in the subset. 

Step 4:  Determine DVLCM n=  from the set of ,  1,...,i i w= .  Determine ,  ib i∀ . 

Step 5:  Adjust the total number of runs to be I
DV

DV

nn n
n
⎡ ⎤

= ×⎢ ⎥
⎢ ⎥

. 

Step 6:  Use new and past techniques to create the base design with an acceptable mapρ . 

Step 7:  Determine the number of stacks required for each set of DVs:  ,  i
i

ns i= ∀  or 

,  I
i i

DV

ns b i
n
⎡ ⎤

= × ∀⎢ ⎥
⎢ ⎥

. 

Step 8:  Create a stacked design for each set of DVs, restack, and append until the overall 
design meets the threshold for mapρ . 

It is common for mapρ  of the stacked DVs to dictate mapρ  for the overall design.  

At times, the experimenter may wish to stack the base design. 
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2. Design Best Practices within the Mixed Factor, Mixed Level Process 

Intertwining proven design schemes with the MFML methodology is integral to 

our overall process.  Full and fractional factorial designs, centered designs, and simple 

LHs are a few of the proven techniques that also play a role in creating a full MFML 

design.  Although we have concentrated on numeric variables, many experiments include 

qualitative variables.  Binary and categorical variables are often essential to the scientific 

method. 

Recall that a major objective in the MFML process is for a balanced design.  

Understanding that nonnumeric variables play no part in computing correlation, it is still 

important for our technique to incorporate these variables in the MFML.  We can cross 

orthogonal designs derived from our techniques with other designs.  The flexibility that 

we offer in design dimensions eases the ability to match the dimensions of a balanced 

nonnumeric design.  It is not uncommon to have five binary variables in an experiment.  

A full factorial design requires 52 32=  runs.  In the absence of a catalogued orthogonal 

(or nearly orthogonal) design, we can offer a 32-run design from our technique with the 

set of numeric variables.  We can also incorporate larger resolution III or resolution V 

fractional factorial designs, such as those in Sanchez & Sanchez (2005). 

D. EXPLORING FIRST RESPONSE TO A BOMB ATTACK USING A 
MIXED-FACTOR, MIXED-LEVEL DESIGN 

This section demonstrates the utility of the MFML.  We discuss the general 

methodology in a fairly complex case involving a graduate student’s thesis.  The study is 

ideal for illustration because it explores a mixture of qualitative and quantitative 

variables, which include integer and continuous variables. 

1. The Thesis Problem 

Major Jon Roginski’s thesis (2006), “Simulating Emergency Response Using 

Multi-Agent Simulation,” studies first response to a bomb attack in Baltimore’s Inner 

Harbor area (see Figure 11).  It leverages simulation techniques to determine the efficient 

use of resources for the Department of Homeland Security (DHS) within the National 
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Exercise Program.  DHS’s previous efforts to employ simulations have cost tens of 

millions of dollars, with an unsatisfactory return on investment (Roginski, 2006). 
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Figure 11.   Baltimore harbor vignette terrain:  actual photo and within  
multiagent simulation (Roginski, 2006). 

Major Roginski adapts an existing organizational learning process and integrates 

low- and high-resolution simulation to provide decision support.  His study presents the 

potential benefits of low-resolution simulation, using efficient experimental design and 

high-performance computing.  He examines a 48-dimensional response surface.  These 

factors are a mixture of integer and DVs, as well as three two-level variables and two 

three-level variables. 

This is quite a design challenge.  Without the use of an efficient design,  

Major Roginski calculates that a traditional gridded design for 48 factors and 30 

replications requires 1.60 × 10
24

 CPU hours, or approximately 116 trillion times the age 

of the universe, even with the help of the Maui High Performance Computer Center 

(MHPCC).  Using an efficient MFML design and the MHPCC, all experiments are 

completed in less than three weeks or 156 CPU centuries (Roginski, 2006). 
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2. Applying the Mixed-Factor, Mixed-Level Methodology to a  
Thesis Question 

Distilling this problem requires an examination of the variables in the experiment.  

The analyst considers 48 variables, three of which are color or pattern indicators in the 

simulation.  These three variables are not part of the design.  Five other variables are 

discrete:  three have two-levels and two have three-levels.  Sloane (2006) does offer some 

alternatives for this design, but the designs in the orthogonal array library are fairly 

restrictive in the number of runs and number of mixed factors they can handle.   

Table 23 shows 40 of the variables that are the focus of design development.  The 

table shows that many of the variables have only eight levels.  Our previous discussions 

in this chapter state that variables with less than ten levels are problematic.  A number of 

the variables have 144 or more levels, which may be considered as continuous.  Lastly, 

four variables have 11 levels.  Table 23 separates the different number of value levels. 



 80

Table 23.   Forty of the variables in Major Roginski’s experiment are displayed.  The 
variables are all integers, but some have enough value levels to be considered  

as continuous, as the shaded rows indicate. 

Variable Name Min Value Max Value  # Value Levels Type 
Num Ag1 0 7 8 Integer 
Num Ag2 0 7 8 Integer 
Num Ag3 0 7 8 Integer 
Num Ag4 0 7 8 Integer 
Num Gun 0 7 8 Integer 
Num EMT SJ 0 7 8 Integer 
Num EMT MM 0 7 8 Integer 
Num ESU1 0 7 8 Integer 
Num ESU2 0 7 8 Integer 
Num ESU3 0 7 8 Integer 
Num ESU4 0 7 8 Integer 
Num ESU5 0 7 8 Integer 
Num Foll1 0 7 8 Integer 
Num Foll2 0 7 8 Integer 
Num Foll3 0 7 8 Integer 
Num Traff1 0 7 8 Integer 
Num Traff2 0 7 8 Integer 
Num Traff3 0 7 8 Integer 
Num Traff4 0 7 8 Integer 
Num Traff5 0 7 8 Integer 
Num Traff6 0 7 8 Integer 
Num Traff7 0 7 8 Integer 
Num Traff8 0 7 8 Integer 
Num Traff9 0 7 8 Integer 
Num Traff10 0 7 8 Integer 
Num Traff11 0 7 8 Integer 
Num Traff12 0 7 8 Integer 
Desire Civ 1 144 144 Integer~Continuous 
Color 1 144 144 Integer~Continuous 
Marksman Pol 1 144 144 Integer~Continuous 
Prob Com 1 144 144 Integer~Continuous 
Vul Ag 1 144 144 Integer~Continuous 
Vul Gun 1 144 144 Integer~Continuous 
Marksman Ag 1 144 144 Integer~Continuous 
Marksman Gun 1 144 144 Integer~Continuous 
Num Civ 0 150 151 Integer~Continuous 
Num SWAT 5 15 11 Integer 
Attr in Orders 0 10 11 Integer 
Attr in Ag 0 10 11 Integer 
Eff Bomb 0 10 11 Integer 
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There are a few approaches that the experiment may use as a modification of the 

steps listed previously.  We acknowledge that, at the time of creating this design, VMIN 

had not yet been fully developed.  Because 27 of the variables have only eight value 

levels, use of the single integer method is a useful scheme.  Nine of the variables have 

144 or more value levels.  The experimenter may consider these variables to have a 

common  of 144.  We easily develop an NOLH with previous techniques. 

The remaining four variables have 11 value levels.  Because d>  for this subset, 

creation of a 4 × 11 NOLH design is possible, followed with a stacking approach.  The 

overall design will require at least 144 design points.  Therefore, it is possible to develop 

an FRLH design for all these numeric variables.  A large number of design points 

mitigates round off issues and converts the actual values of DVs into a nearly orthogonal 

design matrix. 

The decision to treat 40 of the integer variables as continuous variables, and 

develop a base design from them, involves the LCM in the two-level and three-level 

variables in the experiment.  Three two-level variables require an eight-run design, which 

can be orthogonal.  A full-factorial design for two three-level variables requires nine 

runs.  The LCM for these two sets of DVs is 72.  Because a number of the integer 

variables have 144 levels, two stacks of the combined DV sets matches the base design. 

To illustrate, Table 24 has the eight design points of a full-factorial design for the 

two-level variables.  They match with one design point of the two, three-level variables 

(diagonal shading).  Since there are nine design points for the two, three-level variables, 

these eight design points for the two-level, full-factorial design is repeated for each 

unique design point, which results in 72 runs. 
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Table 24.   Excerpt of the DV subset design for the MFML, containing 24 of the 144 
total design points, shows how a full, two-level factorial design for three binary 

variables aligns with three design points of two discrete variables, each with three 
value levels.  We shade sections of the table to emphasize the match between a 
single design point for the discrete, non-binary variables and a full two-level 

factorial for the binary variables. 

ESU FO Police Traffic Time OP Panic
0 0 0 1 1 
0 0 1 1 1 
0 1 0 1 1 
0 1 1 1 1 
1 0 0 1 1 
1 0 1 1 1 
1 1 0 1 1 
1 1 1 1 1 
0 0 0 1 2 
0 0 1 1 2 
0 1 0 1 2 
0 1 1 1 2 
1 0 0 1 2 
1 0 1 1 2 
1 1 0 1 2 
1 1 1 1 2 
0 0 0 1 3 
0 0 1 1 3 
0 1 0 1 3 
0 1 1 1 3 
1 0 0 1 3 
1 0 1 1 3 
1 1 0 1 3 
1 1 1 1 3 

Stacking this set of 72 design points atop one another results in 144 total design 

points, which correspond with the number of runs in the base design.  Using an iterative 

application of Florian’s method with the remaining 40 variables (assuming all are 

continuous) and n = 144 produces a base design with 0.00766mapρ = .  When the actual 

values of the integer variables treated as continuous are converted (by rounding) into the 

design, the resulting nonorthogonality measure is 0.0593mapρ = .  Despite the many 
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variables with small numbers of value levels, the nonorthogonality measure remains 

relatively small.  The complete n = 144, k = 45 design is in Appendix C. 

Examination of this design reveals advantages of the MFML approach.  An 

NOLH design using Cioppa’s (2002) method to explore 45 factors requires m = 9, which 

corresponds with n = 1,025 and k = 46.  This is if all variables are considered continuous.  

If the five qualitative variables are separated, an NOLH design to examine the remaining 

40 variables still requires 1,025 runs since m = 8 only results in k = 37 and n = 513.  A 

conventional crossed design approach to combine the qualitative variables with the 

NOLH could lead to 73,800 runs.  Furthermore, we are unaware of the existence of either 

a 40- or 45-variable NOLH design with so few design points.  Meanwhile, our methods 

have developed an FRLH design that explores up to 172 variables within 193 runs ( 193
172N ) 

and possesses a nonorthogonality measure of 0.0275.  The MFML design reduces the 

number of runs in the NOLH by more than 85%, while preserving enough of the 

orthogonality properties of the base design to gain advantages in the analysis of the 

simulation output. 

Major Roginski’s study successfully examines all 48 factors using this design.  

His analysis of the data from the experimental design yields major findings, undiscovered 

from previous studies: 

• The most important factor in achieving success in crisis mitigation is the 
effectiveness of the police. 

• If a police force is not well trained, they may achieve greater success by 
being less persistent with individuals. 

• Well established, well executed standard operating procedures (SOPs) 
may play a more important role in first response operations than 
interagency communication. 

• There is a diminishing return after a certain level of first responder 
training.  It may be more effective to leverage resources elsewhere after 
reaching that level. 

The ability to examine factors in isolation using the MFML design contributes to 

the validity and significance of these findings (Roginski, 2006). 
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E. SUMMARY 

MFML experiments are difficult propositions for analysts.  They are typically 

problematic, even when using orthogonal or nearly orthogonal designs.  Conversion of 

actual values onto the raw OLH and NOLH designs often result in poor orthogonality 

properties, reducing the advantages of these efficient designs. 

Our methodology produces a balanced MFML design that exhibits near 

orthogonal properties that benefit analysts.  Using guidelines to partition and shape the 

subsets of DVs and stacking techniques, we apply proven design schemes to develop an 

overall balanced design.  The base design consists of continuous variables, or integer 

variables with many value levels.  The flexibility of our previous techniques permits 

manipulation of the base design to conform to the needs of set of DVs. 

A new methodology for stacking experimental designs is an important feature of 

the overall process for creating MFML designs.  Random column permutation of an 

original NOLH design does not create a new design, but randomly restacking these 

column-permuted designs generally results in a completely new overall design.  

Experience and communication with the customer, as well as knowledge about the 

experiment of interest, directs the analyst to logically apply this methodology.  A 

flowchart or list of steps cannot fully capture this art.   

A use-case demonstrates the utility of the MFML methodology.  Major Jon 

Roginski’s study (2006) involves 30 replications of a design consisting of 45 continuous 

and integer DVs with varying numbers of value levels, as well as simulation-specific 

factors.  Roginski (2006) estimates that if a full factorial design were used, the required 

time to complete these experimental runs approximately equals 116 trillion times the age 

of the universe.  Previous NOLH designs by Cioppa (2002) to explore just 45 factors 

require m = 9, which corresponds to n = 1,025, assuming all continuous variables.  A 

conventional crossed design approach to combine the qualitative variables with the 

NOLH could lead to 73,800 runs.  Our new methodology creates an MFML design with 

144 runs to explore 45 variables.  By using the computing poser of the MHPCC along 

with the efficiency of the nearly orthogonal MFML design, Major Roginski’s experiment 

requires less than three weeks or 156 CPU centuries (Roginski, 2006). 
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VI. THE COMPLETE FLEXIBLE OLH/NOLH METHODOLOGY:  
EXPLORING SOLDIER-LEVEL NETWORKS 

We implement our new designs to support the United States Army Training and 

Doctrine Command Analysis Center in a study of network-centric warfare.  Our design 

helps assess the impact that Soldier-level, network-enabled capabilities have on a truck 

terminal’s cargo operations as part of a Joint Force sustainment base.  The research 

studies current joint distribution operations and the role that transportation operations 

play in the joint context.  The system of interest is the operational concept of the 

Centralized Receiving and Shipping Point (CRSP) and its organization. 

A. PROBLEM STATEMENT 

Major Francisco Baez, United States Army, (2008) examines up to 20 factors of 

mixed types with mixed numbers of value levels to answer the following  

research questions: 

• Which network-enabled capability gaps exist in the execution of 
transportation Soldiers performing terminal cargo operations tasks, under 
the identified conditions, to the identified performance standards? 

• Which distribution structures and types of network-enabled capabilities 
allow transportation Soldiers to accomplish their task to specified 
standards, under given conditions? 

• Are the network-enabled capabilities currently available to individual 
transportation Soldiers? 

• What is the operational impact of leaving the gap unfilled? 

 This study focuses on three dissimilar communications network topologies that 

include In-Transit Visibility (ITV), networked communications, and information systems 

that provide network-wide visibility of node and mode status in a shared Logistics 

Common Operating Picture (LCOP).  Operational scenarios from subject matter experts 

will employ these networks in a simulation. 

 Factors come from concept specific attributes documents (JCS, 2005).  The study 

considers ITV-availability, ITV-accuracy, LCOP-update rates, probability of 
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communications, latency, and communication relay capability as parameters that 

influence network capabilities.  Noise factors such as resources available, convoys per 

hour, and convoy mix cases examine aspects of network-enabled capabilities on a 

broader basis. 

The results from this effort can support or refute the findings from the functional 

needs analysis in the Joint Capabilities Integration and Development System.  

Recommendations from this research may also serve to shape future capabilities 

requirements.  Most importantly, it will benefit Soldiers who operate from fixed-based 

facilities in theaters of operation. 

B. DESIGN OF EXPERIMENTS AND SIMULATION RUNS 

This simulation study uses modeling and simulation and an efficient experimental 

design.  Major Baez’ study requires an MFML design for this computer experiment.  His 

simulation includes 1 categorical variable, 5 binary variables, and 14 numeric variables 

(integer and continuous) with different numbers of value levels.  Converting the actual 

values of discrete variables onto a raw NOLH, results in an overall design with poor 

orthogonality properties.  We create a base design using the methods of Chapter V (see 

also Hernandez, 2008b) for one integer variable with 16 levels and 12 continuous 

variables, using a subset of the columns from the n = 16, k = 15 saturated design shown 

in Table 25.  We use an MFML design that consists of this new S-NOLH design, 

combining them with stacking methods, and intelligently applying proven design 

techniques. 
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Table 25.   A saturated design for n = 16 and k = 15 is the foundation for creating a 
base design for an MFML design.  Its correlation measure is 0.0471, with a 

condition number of 1.319. 

k1 k2 k3 k4 k5 k6 k7 k8 k9 k10 k11 k12 k13 k14 k15
n1 10 8 13 6 16 8 15 16 14 3 12 2 13 7 9
n2 13 12 4 8 13 15 3 4 9 4 3 3 4 2 13
n3 7 6 12 1 2 11 4 5 11 5 16 4 3 12 5
n4 9 16 6 4 12 5 8 14 5 6 10 15 2 15 12
n5 11 10 8 5 15 1 7 2 15 16 7 9 9 9 2
n6 14 4 1 10 3 7 12 6 16 7 11 14 12 10 16
n7 6 9 14 16 11 3 9 1 3 8 15 6 7 8 15
n8 1 13 16 7 5 10 5 7 12 9 1 10 16 11 14
n9 12 7 10 2 1 2 13 12 1 13 4 5 8 3 11
n10 16 14 11 13 6 12 2 13 6 11 14 13 14 4 4
n11 2 3 5 3 14 16 10 8 4 15 13 12 11 5 10
n12 3 2 9 11 9 4 6 11 10 1 5 16 6 1 3
n13 15 1 15 12 10 14 11 9 7 10 2 11 5 16 7
n14 5 5 2 14 8 6 1 15 8 12 8 1 10 14 8
n15 4 15 7 15 4 13 16 10 13 14 9 8 1 6 6
n16 8 11 3 9 7 9 14 3 2 2 6 7 15 13 1  

We select any subset of 13 columns and stack it, building a 32-run by 13-factor 

base design to match the full factorial design ( 52 32=  runs) of five binary variables.  

Next, we cross the resulting design with the three-level categorical variable to create a 

96-run design.  Randomly assigning value levels for the three-level integer variable to 

match the overall design creates an NOLH.  The final MFML design contains 96 runs to 

address 20 factors in one operational scenario (see Appendix D).  It retains the raw 

design’s nonorthogonality measure of 0.0471mapρ = .   

We remark that this design was not available when Major Baez did the production 

runs for his thesis.  As an alternative design, Major Baez assigns values for the binary and 

categorical variables within the 257-design point design, since it can handle up to 29 

variables (Sanchez, 2006).  The complete number of design points to examine three 

different scenarios is 771.  The experiment involves 10 replications for each scenario for 

each of the 257 design points, for a total of 7,710 computational experiments.  This is far 

less than the computational effort that would be required for 10 replications of a 257-

design point NOLH crossed with the full, two-level factorial design, but less efficient 

than the MFML design.  We note that after rounding to the actual values, the overall 
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nonorthogonality measure from the catalogued NOLH design is 0.0962mapρ = —more 

than twice that of the MFML, while still requiring nearly three times the number of runs.  

Baez (2008) executes the MFML experiment with 10 replications and 96 design 

points (Hernandez et al., 2008) for each of the three communications scenarios, totaling 

2,880 computational experiments to serve as a validation experiment. 

C. ANALYSIS 

Analysis of the simulation output data was conducted primarily through the JMP 

Statistical Discovery Software (2004), a product of the Statistical Analysis Software 

institute.  Major Baez chose JMP (2008) for its data visualization features that allow the 

user to interactively investigate data, and to refine and understand the analysis results in a 

dynamically-linked spreadsheet and graphical environment (Baez, 2008). 

One analysis approach was construction partition trees, which we will use to 

illustrate the utility of our new designs.  Partition trees recursively split the data from the 

simulation into homogeneous subsets in accordance with the relationship between the 

response variable and the predictors.  Each split considers all possible cuts or groupings, 

given the current state of the tree to select a partition with the largest likelihood-ratio Chi-

square statistic.  A threshold of 5% change in R2 from the previous split determines when 

to split the data set (Baez, 2008).  This method provides insights about the most 

significant factors influencing the response variables. 

Major Baez (2008) focuses his study on comparing the three different network 

structures and identifying those factors that have the greatest impact on each structure’s 

performance, as well as differences in overall performance for the three structures.  An 

analysis of the mean time in the CRSP is only interpreted as the average time to process 

the specified number of convoys in the context of the scenario, and not necessarily the 

“typical” time for a convoy. 

The following plots from the larger design are confirmed with our more efficient 

design.  They demonstrate interesting results that confirm the complexity of the system 

and point to the need for further analysis. 
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The plots from JMP in Figure 12 show the utility of LH designs (Baez, 2008).  

The graphics present the time in the CRSP as the ith convoy appears.  They reveal 

interesting results from the different scenario settings.  Design Points A and B plots show 

two scenarios with an arrival rate of one convoy per hour.  Design Point A has low traffic 

intensity and Design Point B has somewhat high traffic intensity.  The plot for Design 

Point A indicates that after a certain point the time in CRSP begins decreasing slightly, 

but steadily until the terminating event.  The plot for Design Point B outlines a supply 

system that is unable to handle the process for this given combination of factor settings.  

The time in CRSP continues to increase, indicating that very large queues are building 

and each successive convoy takes longer to process than the last.  All three networks 

exhibit very consistent behavior (Baez, 2008). 
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Figure 12.   Time in CRSP by convoy number per network type when the rate of convoy 
arrival is two convoys per hour (Baez, 2008). 

The first branch of the partition tree in Figure 13 reveals that traffic intensity and 

ITV-Available have the greatest influence on the mean time in CRSP.  When traffic 

intensity is near zero there is little queuing in the system, while traffic intensity greater 

than 1.0 results in substantial queuing in the system (Baez, 2008).  Furthermore, the mean 

time in CRSP improves with timely and reliable ITV data, even when traffic intensity 

nears 1.0.  The partition tree clearly identifies that these two factors have the greatest 

influence on the mean response and is the framework for further analysis. 
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Figure 13.   Partition tree for mean time in CRSP, hierarchical network structure  
(Baez, 2008) 

Major Baez also applies multiple linear regression analysis.  The multiple 

regression model, as the approximating function for the true functional relationship 

between the response and regressor variables, examines the behavior of variables of 

interest (Montgomery et al., 2001).  Baez uses a stepwise linear regression method to fit 

regression metamodels for the mean time in CRSP as a function of main effects, 

quadratic effects, and two-way interactions.  The stepwise regression control in JMP also 

helped identify the most influential factors. 

The final regression metamodel is in Figure 14.  It yields an R2 of 0.77 and 

contains two main effect terms and one interaction term.  Other models that are 

considered include additional terms such as other main effects, interactions, and quadratic 

effects.  However, these additional terms explain only 1% more of the variability.  

Therefore, the parsimonious model is selected.  The results suggest that traffic intensity 

and ITV-Available are ranked as the two most influential factors.  Traffic intensity is the 
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dominant factor, as indicated by a large |t-ratio|.  These results serve to reinforce and 

complement those findings in the partition tree. 
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257

Summary of Fit

Model
Error
C. Total

Source
3

253
256

DF
12903598
3880781

16784379

Sum of
Squares

4301199
15339

Mean Square
280.4084

F Ratio

<.0001*
Prob > F

Analysis of Variance

Intercept
ITV_Available
traffic intensity
(ITV_Available-0.50265)*(traffic intensity-0.41024)

Term
201.08553
-311.4838
389.47486
-248.2801

Estimate
16.68101
26.82984
15.0165
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Std Error
12.05

-11.61
25.94
-5.14

t Ratio
<.0001*
<.0001*
<.0001*
<.0001*

Prob>|t|

Parameter Estimates

Whole Model

 

Figure 14.   Regression metamodel for mean time in CRSP, hierarchical  
network structure (Baez, 2008) 

The findings from the 96-run MFML design are similar and reinforce the larger 

design.  In validating the larger design, the MFML proves itself as a viable exploratory 

tool that can save the experimenter time and money.  In this case, the MFML would have 

saved the experimenter two-thirds of the resources expended for the full design. 

D. WIDESPREAD UTILITY OF NEW NOLH DESIGNS 

In addition to Major Baez, over a dozen thesis students have used some form of 

FRLH, NOLH, S-NOLH, and MFML designs to complete their studies.   

Captain Joshua Ang (2006), Singapore Army, used FRLH designs to understand their 

utility and identify areas to improve the library of OLH and NOLH designs.   

Major Chris Michel (2006), United States Marine Corps, used earlier versions of the 

FRLH to find more efficient designs to evaluate the Marine Corp’s Artillery Triad.  

Major Jon Alt (2006), United States Army, explored tactics, techniques, and procedures 

that troops in small combat units could apply in response to the challenges of future 

combat systems and their employment.  Major Earl Richardson (2006), United States 
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Marine Corps, employed NOLHs to study sensitivities in the Infantry Warrior  

Simulation (IWARS). 
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VII. CONCLUSIONS AND RECOMMENDATIONS FOR  
FUTURE STUDY 

Immense computing power enables the simulation of increasingly complex 

problems, thereby allowing analysts to greatly assist decision makers in all sectors of 

society.  Studies in human behavior and biomimetics often use computer simulations that 

rely on efficient designs of experiments, adopting techniques that allow analysts to 

“systematically examine a broader range of possible innovations . . .” (Booker, 2005).  

The United States Marine Corps Warfighting Lab uses agent-based models in computer 

experiments to understand nontraditional combat through the aggregate study of large 

numbers of nonlinear actors (Ilachinski, 1997). 

In particular, Department of Defense faces many of the new challenges that 

Brown’s Grave New World (2003) uncovers.  The impact of technology on global 

security, the importance of nonmilitary factors in military affairs, and the role that 

transnational actors play in disrupting nation-states are only the beginning in a growing 

list of variables that decision makers must consider—often making physical 

experimentation infeasible. 

Analysts frequently turn to computational experimentation, such as computer 

simulation, to address the hundreds of input variables for the system(s) of interest.  In so 

doing, analysts search for schemas that gain the most information from experiments.  

Computational and monetary costs for one experimental run push analysts to find 

efficient designs, especially when it is ill-advised to make assumptions about variables of 

interest.  Earlier designs of experiments may not always be suited for computer 

experimentation.  The recent surge of methods to construct efficient designs, most 

notably those with orthogonal properties (OLH and NOLH), offers analysts a new 

methodology for exploring extremely complex problems (Kleijnen et al., 2005).  The 

principal shortfalls of these designs are their strict limitations in dimensionality and their 

scarcity.  Techniques that overcome these restrictions will make orthogonal and nearly 

orthogonal designs an important class of design for exploring large models. 
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Our new techniques to construct experimental designs provide the freedom to 

create a variety of OLH and NOLH designs for many new design dimensions.  The 

flexibility of this methodology enables the construction of a design with the exact 

dimensions that an analyst requires.  It replaces the awkwardness of fitting value levels in 

a catalogued design, by using each value level more than once when a variable contains 

fewer levels than runs.  Additionally, our method possesses the ability to produce new 

designs in a matter of hours. 

Introducing a new family of S-NOLHs contributes to the discipline of design of 

experiments.  The efficiency of examining the experimental space of k variables from a 

sample size, n = k + 1 in a LH offers great potential for simulation experiments.  The 

ability to select any one of 
2
k⎛ ⎞
⎜ ⎟
⎝ ⎠

 subsets of columns or exchange columns between subsets 

in an S-NOLH design gives analysts unprecedented flexibility. 

This new construction methodology fills much of the void in the OLH and NOLH 

library.  Catalogued designs from Cioppa’s (2002) original work explore k = m +
1

2
m −⎛ ⎞
⎜ ⎟
⎝ ⎠

 

factors.  The gap between any two sequentially-sized designs is m – 1 factors and grows 

as m increases.  S-NOLH designs fill gaps between the number of factors, as well as the 

combinatorial voids created when also considering the sample size, n = 2m + 1.  For 

instance, a gap exists between 17
7O  and 33

11N when there is a need to address between  

8 and 10 factors for, at most, 17 runs.  A saturated 17
16N  easily fills this gap.  Currently, no 

OLH or NOLH designs exist between n = 17 and n = 33.  We build a saturated 24
23N  

(Appendix A) that does not conform to n or k restrictions that exist in previous OLH and 

NOLH construction methods.  We have catalogued a number of saturated designs that 

address from 2 to 63 factors, with no more than 64 runs.  More designs are available for 

the asking. 

One research area that requires further study is the performance of our new 

designs in the presence of interaction and quadratic terms.  OLH and NOLH designs from 

Ye (1998), Cioppa (2002), and Ang (2006) retain their orthogonal properties in the 

presence of a single quadratic or two-factor interaction term.  Our preliminary findings 
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show that RLH outperforms OLH and NOLH in terms of mapρ  as the number of quadratic 

or two-factor interaction terms increase, but this requires further study.  The impact of 

higher order interactions in an experiment is also worthy of examination.  An 

understanding of thresholds related to the number and order of nonlinear terms that may 

possibly be in an experiment will guide analysts for using our designs. 

The success of VMIN for building new orthogonal or nearly orthogonal designs is 

a significant step for using optimization methods to construct experimental designs.  The 

initial design that VMIN uses is important for quickly finding a solution, or in finding a 

solution at all.  Development of a more comprehensive heuristic to initiate VMIN would 

be a major contribution to this area of research.  Our current approach is to start with a 

new FRLH when VMIN finds difficulty in converging to a solution.  A better method 

than rms for selecting the next column to optimize may also improve the algorithm.  At 

times, VMIN remains on the same column throughout the optimization routine because 

one run of VMIN on the targeted column shows no improvement, thereby resulting in the 

same column with the greatest rms.  A means to move the program to the next column 

should help VMIN’s performance.  A process to automatically “skip” to the next column 

after no improvements in the selected column will enable VMIN to continue.  This forced 

movement can in turn affect the optimization of the unimproved column when the routine 

eventually returns to it.  Currently, we manually stop the program and target the column 

that has the next greatest rms.  Although this process has proven effective, a more 

automated means would be very useful. 
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APPENDIX A. SATURATED NOLH DESIGNS 

Appendix A displays a number of saturated NOLH designs that we developed 

during the course of our study. Each design is designated with a symbol per Cioppa 

(2002) and the nonorthogonality measure for the design. 

14
12N  with 0.0462mapρ =  

  k1 k2 k3 k4 k5 k6 k7 k8 k9 k10 k11 k12 
n1 3 6 1 6 14 5 5 6 10 6 14 6 
n2 1 7 9 10 5 14 2 8 8 14 4 4 
n3 12 8 3 14 4 7 13 2 11 13 8 11 
n4 9 5 4 3 3 2 3 12 6 9 2 14 
n5 10 1 7 1 10 8 14 9 7 12 6 2 
n6 11 12 10 13 12 1 6 11 9 7 3 1 
n7 6 3 14 11 11 11 12 10 4 4 7 13 
n8 4 11 11 7 7 6 9 14 12 11 13 12 
n9 2 4 5 12 9 4 7 4 3 5 5 8 
n10 14 2 12 8 6 9 1 5 13 3 11 7 
n11 7 10 13 4 2 3 8 1 2 8 12 5 
n12 5 13 8 2 8 10 11 3 14 2 1 9 
n13 8 9 2 9 1 12 10 13 5 1 10 3 
n14 13 14 6 5 13 13 4 7 1 10 9 10 

16
15N  with 0.0471mapρ =  

k1 k2 k3 k4 k5 k6 k7 k8 k9 k10 k11 k12 k13 k14 k15
n1 10 8 13 6 16 8 15 16 14 3 12 2 13 7 9
n2 13 12 4 8 13 15 3 4 9 4 3 3 4 2 13
n3 7 6 12 1 2 11 4 5 11 5 16 4 3 12 5
n4 9 16 6 4 12 5 8 14 5 6 10 15 2 15 12
n5 11 10 8 5 15 1 7 2 15 16 7 9 9 9 2
n6 14 4 1 10 3 7 12 6 16 7 11 14 12 10 16
n7 6 9 14 16 11 3 9 1 3 8 15 6 7 8 15
n8 1 13 16 7 5 10 5 7 12 9 1 10 16 11 14
n9 12 7 10 2 1 2 13 12 1 13 4 5 8 3 11
n10 16 14 11 13 6 12 2 13 6 11 14 13 14 4 4
n11 2 3 5 3 14 16 10 8 4 15 13 12 11 5 10
n12 3 2 9 11 9 4 6 11 10 1 5 16 6 1 3
n13 15 1 15 12 10 14 11 9 7 10 2 11 5 16 7
n14 5 5 2 14 8 6 1 15 8 12 8 1 10 14 8
n15 4 15 7 15 4 13 16 10 13 14 9 8 1 6 6
n16 8 11 3 9 7 9 14 3 2 2 6 7 15 13 1  
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17
16N  with 0.0490mapρ =  

k1 k2 k3 k4 k5 k6 k7 k8 k9 k10 k11 k12 k13 k14 k15 k16
n1 5 9 13 7 15 1 15 6 5 2 7 11 1 9 14 3
n2 13 14 1 16 12 5 6 3 11 5 6 1 6 7 3 13
n3 14 2 6 9 9 2 16 8 9 17 11 17 10 3 4 12
n4 12 13 16 10 11 17 9 1 17 15 12 13 2 13 8 7
n5 4 15 11 15 6 12 7 16 6 6 15 14 4 1 10 15
n6 9 4 15 17 14 8 13 15 10 7 17 3 15 14 6 9
n7 10 7 14 3 10 4 4 17 13 14 3 4 3 11 11 17
n8 8 12 7 1 13 13 14 4 2 12 14 2 12 5 13 14
n9 17 6 8 2 3 15 11 13 7 1 10 7 5 10 2 5
n10 1 3 2 6 17 14 3 10 8 9 9 15 9 15 5 11
n11 2 17 3 8 1 6 17 11 12 11 8 9 11 17 7 8
n12 16 11 4 12 7 7 2 12 3 16 13 8 7 12 16 1
n13 15 10 12 13 8 11 10 7 4 4 1 16 16 16 15 16
n14 6 1 5 14 5 16 12 9 15 10 4 5 8 4 17 6
n15 3 8 17 11 4 10 5 5 1 13 2 6 13 6 1 4
n16 7 5 10 4 2 3 1 2 14 3 16 10 14 8 12 10
n17 11 16 9 5 16 9 8 14 16 8 5 12 17 2 9 2  

19
18N  with 0.0456mapρ =  

k1 k2 k3 k4 k5 k6 k7 k8 k9 k10 k11 k12 k13 k14 k15 k16 k17 k18
n1 16 11 2 6 13 12 11 3 14 6 3 19 9 1 11 6 17 4
n2 1 3 17 1 14 5 10 2 19 5 9 6 12 9 13 8 4 12
n3 14 6 19 3 11 15 14 18 12 19 6 11 1 7 4 9 13 16
n4 8 18 18 17 10 8 8 5 5 14 1 1 16 3 6 11 16 10
n5 17 13 15 19 15 2 18 15 16 8 13 8 7 14 15 4 7 2
n6 15 10 10 14 2 3 13 6 17 9 7 17 13 16 5 19 12 19
n7 4 15 13 11 3 13 19 8 4 11 17 18 14 5 17 2 10 15
n8 13 16 16 2 7 10 6 16 8 4 14 15 18 11 1 12 5 1
n9 18 9 5 7 12 4 9 4 2 7 19 2 6 8 3 5 9 17
n10 11 7 14 18 9 18 1 1 9 15 11 16 3 12 10 10 1 8
n11 7 4 12 10 8 7 2 14 1 2 4 13 8 19 14 3 18 11
n12 12 19 11 9 18 19 5 12 13 3 15 7 10 13 18 16 14 18
n13 6 2 9 16 4 17 16 13 10 1 12 5 5 4 7 17 11 5
n14 10 1 6 15 19 6 7 19 7 13 10 14 19 2 12 14 6 14
n15 19 5 7 4 6 16 15 7 6 16 8 3 17 17 19 13 8 6
n16 5 12 8 5 5 1 3 11 11 18 16 10 2 6 16 18 15 3
n17 2 17 3 8 17 9 17 10 3 10 2 12 4 15 8 15 2 9
n18 3 8 4 13 16 14 12 9 15 17 18 9 15 18 2 7 19 7
n19 9 14 1 12 1 11 4 17 18 12 5 4 11 10 9 1 3 13  
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24
23N  with 0.0496mapρ =  

k1 k2 k3 k4 k5 k6 k7 k8 k9 k10 k11 k12 k13 k14 k15 k16 k17 k18 k19 k20 k21 k22 k23
n1 5 23 21 15 20 6 15 3 3 15 10 4 16 5 13 16 11 1 1 15 18 21 12
n2 9 5 10 13 22 14 4 24 15 5 1 17 22 1 11 13 21 8 8 16 8 10 23
n3 19 1 22 7 21 8 10 6 13 17 22 11 1 4 22 15 22 13 13 18 9 1 8
n4 20 16 17 14 18 19 8 4 23 3 18 20 14 17 24 2 9 14 7 5 23 18 20
n5 12 21 11 2 16 11 7 10 9 1 23 9 15 14 2 22 3 22 16 21 13 3 22
n6 4 22 18 4 13 1 23 18 19 14 20 24 20 12 17 11 18 12 20 9 2 19 13
n7 10 14 7 23 11 2 20 8 22 4 5 1 2 6 15 6 4 16 17 8 4 11 16
n8 22 17 15 11 3 18 22 9 2 2 9 21 8 7 5 3 20 18 6 23 7 15 6
n9 14 18 3 21 14 23 5 5 8 22 16 15 12 3 18 21 13 20 21 13 3 24 14
n10 2 4 5 3 17 10 12 1 10 12 3 16 9 22 9 19 16 23 4 2 12 16 9
n11 24 7 19 6 15 5 6 16 17 23 4 8 21 16 10 7 2 21 14 22 10 23 7
n12 3 19 12 5 10 24 2 13 21 20 14 14 6 11 3 1 7 5 9 10 6 6 3
n13 8 12 13 19 12 16 17 23 4 11 19 7 24 9 21 10 5 24 5 6 15 2 1
n14 11 2 4 8 6 17 16 19 14 9 24 3 10 21 20 14 12 4 2 20 5 22 18
n15 1 6 20 16 7 21 19 7 16 19 11 2 19 15 8 5 24 19 22 17 21 12 21
n16 15 24 6 9 5 7 11 21 5 24 6 13 4 18 23 8 17 15 10 11 20 7 24
n17 21 13 24 12 8 22 14 11 7 10 2 10 18 24 16 20 10 2 18 3 1 5 15
n18 7 8 9 10 23 20 24 17 6 13 7 22 5 13 14 12 1 6 24 19 22 13 11
n19 6 15 16 22 2 9 3 12 20 7 8 19 11 19 19 24 14 11 15 24 19 9 2
n20 17 10 8 1 1 12 9 15 12 6 12 5 13 2 12 17 15 7 23 1 24 20 5
n21 18 3 2 18 4 3 13 2 11 21 17 23 23 10 7 9 6 3 12 12 14 4 17
n22 23 20 1 17 24 15 21 14 24 16 13 6 17 20 6 18 23 9 11 14 17 8 4
n23 16 9 23 20 9 13 18 22 18 18 15 18 3 8 1 23 8 17 3 4 16 14 19
n24 13 11 14 24 19 4 1 20 1 8 21 12 7 23 4 4 19 10 19 7 11 17 10  

25
24N  with 0.0477mapρ =  

k1 k2 k3 k4 k5 k6 k7 k8 k9 k10 k11 k12 k13 k14 k15 k16 k17 k18 k19 k20 k21 k22 k23 k24
n1 20 2 5 11 6 23 9 14 23 19 20 13 8 9 25 25 11 5 10 21 3 20 15 15
n2 16 20 14 10 3 10 21 25 7 7 25 12 10 3 15 18 25 17 19 17 23 12 18 24
n3 6 25 3 18 4 14 7 3 14 11 21 3 13 25 13 10 22 25 6 15 5 17 12 17
n4 5 10 9 12 9 2 25 8 9 23 10 1 24 13 11 19 7 7 21 12 4 7 25 13
n5 13 4 16 24 8 16 24 2 15 13 11 22 1 10 2 9 5 23 22 18 12 15 10 22
n6 21 3 6 23 11 6 11 6 2 6 13 6 18 4 14 7 19 8 15 9 17 25 6 1
n7 15 11 19 2 14 5 22 22 24 2 18 10 12 24 8 6 4 15 12 22 14 24 16 2
n8 3 8 11 16 24 25 23 15 5 8 17 20 23 18 6 20 21 9 7 25 13 6 7 6
n9 11 7 24 4 12 17 3 9 10 3 23 7 9 11 7 4 14 1 17 5 2 3 11 19
n10 23 21 18 19 5 15 10 19 6 10 2 15 2 17 1 22 16 10 3 10 6 11 23 3
n11 1 19 7 21 10 8 2 23 19 12 9 17 20 5 4 12 2 2 9 16 15 21 9 23
n12 22 5 13 20 15 1 5 10 11 4 15 23 22 21 23 14 6 19 5 13 16 2 21 21
n13 17 12 12 6 13 22 14 7 18 16 19 5 19 2 3 21 3 24 2 3 25 9 13 12
n14 14 23 20 15 17 11 15 1 21 5 4 4 7 16 22 23 13 3 16 20 24 8 4 14
n15 25 18 4 8 18 9 6 11 25 22 8 18 17 7 5 3 23 13 20 23 11 1 14 10
n16 10 1 21 17 20 19 1 21 12 21 6 2 14 22 9 17 20 21 24 14 22 18 19 18
n17 4 13 1 14 19 20 16 24 16 1 3 9 6 6 24 8 9 22 18 6 9 5 17 8
n18 18 17 15 13 1 21 12 20 3 24 12 11 16 20 21 1 1 12 14 19 18 4 3 9
n19 19 9 8 3 25 4 20 17 4 20 5 8 5 14 12 11 15 14 1 11 7 16 2 25
n20 8 15 17 25 23 12 18 13 20 25 24 14 4 12 18 2 17 4 4 7 21 13 24 11
n21 7 22 23 7 22 13 4 5 1 15 14 19 11 1 20 13 8 20 13 24 8 22 20 7
n22 2 6 25 9 2 3 13 16 22 18 7 21 15 8 19 15 24 18 8 8 10 10 1 4
n23 9 16 2 5 16 7 8 12 8 17 22 25 3 23 10 24 10 11 25 2 19 14 8 5
n24 12 14 10 1 7 24 17 4 13 9 1 24 21 19 16 5 18 6 11 4 20 23 22 20
n25 24 24 22 22 21 18 19 18 17 14 16 16 25 15 17 16 12 16 23 1 1 19 5 16  
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33
30N with 0.0465mapρ =  

k1 k2 k3 k4 k5 k6 k7 k8 k9 k10 k11 k12 k13 k14 k15 k16 k17 k18 k19 k20 k21 k22 k23 k24 k25 k26 k27 k28 k29 k30
n1 14 23 5 11 10 26 4 7 31 32 10 13 1 1 3 8 20 28 18 17 27 18 24 12 3 24 24 26 17 32
n2 5 1 6 19 18 2 23 19 23 31 27 15 5 20 20 31 17 32 26 28 14 3 2 9 23 7 17 10 16 26
n3 26 6 8 27 32 5 2 13 29 14 32 33 21 18 23 14 29 13 21 15 26 17 22 25 5 9 29 30 22 2
n4 29 16 14 5 13 28 33 18 20 19 8 18 14 33 33 3 14 19 19 8 10 4 32 23 22 6 30 27 26 30
n5 13 29 3 30 14 30 20 32 18 3 21 12 28 19 7 33 22 11 24 2 11 6 7 14 2 8 6 28 23 27
n6 19 11 31 25 22 18 22 3 4 22 13 27 30 7 27 25 32 30 10 4 5 24 11 6 12 30 27 29 6 31
n7 2 10 28 33 6 17 13 16 22 2 15 22 11 21 16 15 24 22 29 12 13 30 31 4 25 14 15 2 33 24
n8 24 18 11 2 8 4 26 6 6 10 18 1 4 3 28 28 30 10 20 11 22 22 17 24 15 26 1 24 29 12
n9 30 26 7 15 11 11 24 28 17 7 31 16 9 13 24 13 5 33 6 1 19 23 6 11 20 18 32 4 4 15
n10 21 33 18 16 29 7 14 17 28 29 26 3 32 12 25 24 13 8 2 30 6 29 29 15 18 4 11 8 20 33
n11 15 14 21 3 30 33 1 33 11 12 6 14 10 25 29 18 33 26 12 27 21 31 1 27 10 13 19 7 24 19
n12 28 3 20 17 3 19 5 26 5 15 4 8 26 9 5 32 7 9 15 19 28 13 28 22 13 11 33 11 5 18
n13 18 24 10 18 7 21 8 4 19 33 7 28 29 32 9 29 6 27 7 9 18 21 3 26 32 20 9 25 30 7
n14 3 19 12 1 26 22 15 11 3 13 23 23 13 15 2 19 31 3 9 23 1 1 20 13 29 17 31 14 14 14
n15 23 30 33 21 4 29 17 20 25 28 22 32 2 10 30 27 8 1 30 26 4 16 8 17 6 22 21 15 15 8
n16 32 13 29 8 5 9 21 22 8 20 24 30 33 16 13 12 23 25 22 32 25 2 16 18 9 19 5 6 27 25
n17 4 21 25 10 33 1 19 27 27 5 3 26 17 8 19 30 1 23 17 14 16 8 27 29 16 32 22 16 28 16
n18 31 8 9 20 24 23 25 2 12 1 17 24 6 23 4 23 4 24 23 33 3 33 23 28 17 12 8 22 7 20
n19 16 12 30 13 12 3 31 15 30 24 1 4 18 22 6 17 27 7 25 10 12 27 5 20 19 1 28 20 13 5
n20 10 9 17 26 2 10 9 8 21 6 29 5 20 24 17 2 12 5 3 20 9 15 4 33 14 33 26 13 25 29
n21 25 17 4 6 17 8 3 23 26 17 9 31 23 17 15 6 25 6 28 3 8 20 19 16 27 25 2 3 1 22
n22 1 31 2 28 9 15 29 14 2 26 14 25 19 26 26 20 26 16 16 22 30 25 33 30 11 15 23 5 9 11
n23 9 27 26 24 16 25 32 21 32 9 16 17 25 4 11 4 28 29 14 29 23 11 13 32 26 16 10 23 2 13
n24 8 5 24 4 1 24 12 30 24 16 33 20 16 14 21 22 16 20 1 16 17 26 30 8 28 10 7 33 12 4
n25 11 28 15 12 15 13 6 9 16 4 11 7 27 31 32 16 9 14 33 31 29 14 12 1 24 23 20 32 3 17
n26 20 4 1 23 25 31 28 29 14 27 19 9 31 2 18 9 11 12 31 25 15 28 15 10 30 31 25 17 32 9
n27 12 20 22 14 23 6 30 31 7 23 20 29 8 28 1 5 10 4 8 18 31 32 10 5 8 21 14 31 18 28
n28 17 7 13 29 20 14 16 24 15 25 2 6 12 27 22 7 15 21 4 21 2 5 25 7 1 27 3 19 8 1
n29 27 22 32 31 31 20 11 25 9 30 30 2 3 29 12 21 21 18 27 6 24 10 26 31 33 29 12 21 10 21
n30 7 2 19 22 27 27 18 5 13 18 12 21 15 5 31 11 2 2 11 5 33 9 9 21 21 2 4 9 11 23
n31 22 15 23 9 28 32 27 1 33 11 25 11 22 30 8 26 18 15 13 13 32 12 21 3 7 28 16 1 19 6
n32 33 32 16 32 19 12 10 12 10 8 5 19 7 6 14 10 19 17 5 24 20 7 14 2 31 5 18 18 31 10
n33 6 25 27 7 21 16 7 10 1 21 28 10 24 11 10 1 3 31 32 7 7 19 18 19 4 3 13 12 21 3  

33
31N  with 0.0485mapρ =  

k1 k2 k3 k4 k5 k6 k7 k8 k9 k10 k11 k12 k13 k14 k15 k16 k17 k18 k19 k20 k21 k22 k23 k24 k25 k26 k27 k28 k29 k30 k31
n1 27 25 25 16 10 4 8 21 17 1 26 29 21 14 5 13 17 9 30 12 32 31 1 21 3 16 8 18 30 30 6
n2 22 15 22 17 9 33 10 6 30 33 4 6 10 6 27 29 13 16 10 10 33 14 12 28 19 18 19 27 33 14 13
n3 4 17 4 21 25 29 24 4 14 12 19 30 6 19 23 14 25 14 23 19 24 16 30 1 7 2 33 5 32 28 9
n4 15 19 9 2 33 2 4 22 12 32 27 18 2 27 30 28 7 15 11 22 16 19 6 24 32 11 11 13 26 26 11
n5 3 23 30 3 30 26 12 17 8 8 17 23 18 3 25 17 20 1 3 9 4 26 2 11 14 17 31 23 10 5 28
n6 11 9 31 29 26 16 28 31 25 30 29 16 31 20 18 32 26 20 24 4 25 29 18 5 27 9 13 2 9 9 14
n7 31 7 27 13 11 14 33 8 13 10 28 1 7 8 20 21 33 28 8 31 5 12 4 19 6 6 14 12 17 8 4
n8 30 4 1 7 4 31 13 25 15 27 10 28 24 13 14 6 8 8 26 27 10 22 9 2 26 12 16 15 8 4 2
n9 28 18 11 33 12 8 31 9 18 14 11 32 29 17 33 25 1 17 6 2 2 18 15 22 11 29 24 6 22 21 10
n10 7 28 6 32 5 24 11 28 3 16 25 15 4 15 1 31 3 31 15 15 9 2 5 7 16 22 15 10 19 15 26
n11 10 32 13 6 23 7 29 24 11 19 1 8 26 26 19 1 23 30 27 5 26 1 3 20 20 20 28 17 16 10 3
n12 23 11 8 4 18 20 16 29 10 15 18 3 28 29 3 16 9 27 4 7 7 33 33 27 10 1 25 22 24 24 19
n13 14 2 26 18 6 11 27 27 1 31 2 19 13 24 13 22 18 2 14 13 27 9 19 6 2 13 7 31 18 23 29
n14 2 16 5 25 7 15 17 19 29 4 24 2 5 22 21 24 12 5 29 8 21 24 21 29 12 15 22 28 3 3 5
n15 12 33 7 15 17 12 3 3 6 21 6 7 33 18 26 30 28 19 20 28 15 28 26 10 1 23 1 14 11 13 15
n16 6 3 17 9 8 9 9 7 32 25 30 26 22 28 12 12 24 33 22 16 8 21 13 9 15 33 23 29 31 6 30
n17 33 31 19 5 31 22 26 30 31 18 23 14 14 4 22 26 5 23 32 23 13 13 27 3 8 25 20 32 14 27 20
n18 29 22 16 22 22 18 1 18 26 28 31 9 23 16 6 5 19 3 1 17 28 4 24 16 5 26 29 1 12 11 18
n19 1 20 28 1 1 5 23 11 28 7 15 12 30 5 10 18 2 6 18 25 14 5 31 14 31 10 12 4 27 18 21
n20 16 29 20 24 15 21 25 12 2 29 32 21 17 11 8 9 30 7 17 11 3 15 32 25 33 28 9 33 25 22 1
n21 18 14 23 23 27 19 2 1 33 13 7 17 12 23 9 8 15 22 12 1 6 7 14 4 21 3 2 25 2 29 8
n22 21 10 21 11 2 13 5 26 16 5 20 25 16 25 32 27 32 21 7 20 23 3 28 15 25 24 30 19 1 31 12
n23 9 8 12 20 20 17 18 14 9 22 33 27 27 1 31 2 6 29 19 18 29 8 20 31 9 5 5 24 4 16 27
n24 8 6 2 27 24 25 22 33 27 3 14 4 25 10 24 7 27 13 5 26 18 20 8 13 24 31 3 20 28 32 22
n25 13 5 29 30 21 1 7 16 7 23 3 5 3 2 15 3 10 24 28 24 11 32 23 17 18 27 32 9 13 25 16
n26 26 21 32 14 16 32 19 10 4 2 22 11 8 33 28 4 4 25 16 14 31 27 25 8 28 30 6 11 20 7 23
n27 32 13 3 12 28 3 20 20 19 9 8 24 1 12 16 15 29 10 21 3 12 11 29 23 17 21 4 7 23 1 31
n28 24 30 10 26 13 6 32 5 23 24 21 10 15 32 17 10 14 4 13 32 20 23 7 12 23 8 26 26 7 20 33
n29 19 27 18 28 19 10 15 23 21 11 5 33 19 7 7 23 22 32 2 30 30 25 22 18 30 7 21 30 21 2 17
n30 25 1 14 19 32 23 14 2 5 6 16 13 32 21 4 33 16 11 33 21 22 6 10 26 29 19 27 21 15 19 24
n31 17 24 33 31 14 28 6 32 22 17 13 22 20 31 29 11 21 12 31 29 1 10 17 33 13 4 17 16 29 12 25
n32 5 12 24 10 29 27 30 15 24 20 9 31 9 30 2 20 11 18 9 33 19 17 16 32 4 32 10 8 6 17 7
n33 20 26 15 8 3 30 21 13 20 26 12 20 11 9 11 19 31 26 25 6 17 30 11 30 22 14 18 3 5 33 32  
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33
32N  with 0.0434mapρ =  

k1 k2 k3 k4 k5 k6 k7 k8 k9 k10 k11 k12 k13 k14 k15 k16 k17 k18 k19 k20 k21 k22 k23 k24 k25 k26 k27 k28 k29 k30 k31 k32
n1 14 23 5 18 12 26 4 7 31 32 10 8 1 1 3 10 20 28 18 17 27 24 24 12 3 24 24 23 10 8 17 32
n2 5 1 6 3 15 2 23 19 23 31 27 31 5 20 20 18 17 32 26 28 14 15 2 9 23 7 17 13 25 32 16 26
n3 26 6 8 17 32 5 2 13 29 14 32 14 21 18 23 31 29 13 21 15 26 6 22 25 5 9 29 7 1 13 22 2
n4 29 16 14 4 18 28 33 18 20 19 8 3 14 33 33 11 14 19 19 8 10 30 32 23 22 6 30 9 7 26 26 30
n5 13 29 3 6 13 30 20 32 18 3 21 33 28 19 7 15 22 11 24 2 11 5 7 14 2 8 6 27 5 15 23 27
n6 19 11 31 24 26 18 22 3 4 22 13 25 30 7 27 21 32 30 10 4 5 9 11 6 12 30 27 22 6 24 6 31
n7 2 10 28 30 21 17 13 16 22 2 15 15 11 21 16 5 24 22 29 12 13 1 31 4 25 14 15 4 32 5 33 24
n8 24 18 11 22 1 4 26 6 6 10 18 28 4 3 28 7 30 10 20 11 22 31 17 24 15 26 1 3 8 20 29 12
n9 30 26 7 23 16 11 24 28 17 7 31 13 9 13 24 13 5 33 6 1 19 20 6 11 20 18 32 15 31 1 4 15
n10 21 33 18 29 3 7 14 17 28 29 26 24 32 12 25 30 13 8 2 30 6 19 29 15 18 4 11 10 23 11 20 33
n11 15 14 21 31 14 33 1 33 11 12 6 18 10 25 29 32 33 26 12 27 21 29 1 27 10 13 19 16 26 19 24 19
n12 28 3 20 13 8 19 5 26 5 15 4 32 26 9 5 3 7 9 15 19 28 13 28 22 13 11 33 2 27 27 5 18
n13 18 24 10 21 28 21 8 4 19 33 7 29 29 32 9 8 6 27 7 9 18 16 3 26 32 20 9 5 11 10 30 7
n14 3 19 12 1 23 22 15 11 3 13 23 19 13 15 2 26 31 3 9 23 1 33 20 13 29 17 31 8 19 3 14 14
n15 23 30 33 16 33 29 17 20 25 28 22 27 2 10 30 4 8 1 30 26 4 11 8 17 6 22 21 12 20 18 15 8
n16 32 13 29 2 30 9 21 22 8 20 24 12 33 16 13 6 23 25 22 32 25 28 16 18 9 19 5 29 28 2 27 25
n17 4 21 25 8 25 1 19 27 27 5 3 30 17 8 19 33 1 23 17 14 16 25 27 29 16 32 22 25 14 17 28 16
n18 31 8 9 33 24 23 25 2 12 1 17 23 6 23 4 24 4 24 23 33 3 17 23 28 17 12 8 24 9 14 7 20
n19 16 12 30 27 4 3 31 15 30 24 1 17 18 22 6 12 27 7 25 10 12 21 5 20 19 1 28 31 15 6 13 5
n20 10 9 17 15 5 10 9 8 21 6 29 2 20 24 17 2 12 5 3 20 9 10 4 33 14 33 26 28 21 28 25 29
n21 25 17 4 20 31 8 3 23 26 17 9 6 23 17 15 17 25 6 28 3 8 27 19 16 27 25 2 19 29 31 1 22
n22 1 31 2 25 27 15 29 14 2 26 14 20 19 26 26 9 26 16 16 22 30 7 33 30 11 15 23 30 30 21 9 11
n23 9 27 26 11 17 25 32 21 32 9 16 4 25 4 11 16 28 29 14 29 23 8 13 32 26 16 10 1 12 22 2 13
n24 8 5 24 26 19 24 12 30 24 16 33 22 16 14 21 1 16 20 1 16 17 32 30 8 28 10 7 33 2 23 12 4
n25 11 28 15 14 7 13 6 9 16 4 11 16 27 31 32 14 9 14 33 31 29 22 12 1 24 23 20 17 3 9 3 17
n26 20 4 1 28 10 31 28 29 14 27 19 9 31 2 18 25 11 12 31 25 15 12 15 10 30 31 25 21 16 16 32 9
n27 12 20 22 32 29 6 30 31 7 23 20 5 8 28 1 23 10 4 8 18 31 18 10 5 8 21 14 6 4 25 18 28
n28 17 7 13 5 6 14 16 24 15 25 2 7 12 27 22 19 15 21 4 21 2 4 25 7 1 27 3 11 18 7 8 1
n29 27 22 32 10 2 20 11 25 9 30 30 21 3 29 12 28 21 18 27 6 24 3 26 31 33 29 12 26 13 12 10 21
n30 7 2 19 9 22 27 18 5 13 18 12 11 15 5 31 27 2 2 11 5 33 14 9 21 21 2 4 20 24 4 11 23
n31 22 15 23 12 11 32 27 1 33 11 25 26 22 30 8 29 18 15 13 13 32 23 21 3 7 28 16 18 33 29 19 6
n32 33 32 16 7 20 12 10 12 10 8 5 10 7 6 14 20 19 17 5 24 20 2 14 2 31 5 18 32 17 33 31 10
n33 6 25 27 19 9 16 7 10 1 21 28 1 24 11 10 22 3 31 32 7 7 26 18 19 4 3 13 14 22 30 21 3  
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47
46N  with 0.0499mapρ =  

 k1 k2 k3 k4 k5 k6 k7 k8 k9 k10 k11 k12 k13 k14 k15 k16 k17 k18 k19 k20 k21 k22 k23 k24 k25 k26 k27 k28 k29 k30 k31 k32 k33 k34 k35 k36 k37 k38 k39 k40 k41 k42 k43 k44 k45 k46
n1 39 1 46 1 16 8 12 8 40 17 27 33 38 20 43 27 7 11 40 41 23 26 38 46 13 9 39 21 34 36 15 11 29 28 41 40 44 20 18 29 15 42 44 28 12 45
n2 14 46 11 20 24 19 40 23 8 1 47 29 1 3 30 37 23 46 42 21 29 1 40 18 22 19 41 23 23 18 5 18 41 24 6 47 25 16 1 12 35 38 19 37 7 11
n3 2 45 1 39 9 21 44 31 28 24 6 20 31 18 37 45 28 3 41 33 4 21 18 40 18 11 16 22 42 46 28 34 23 25 4 10 24 15 43 42 33 18 30 43 17 44
n4 9 9 6 29 26 6 35 28 2 38 40 37 42 22 39 9 5 40 20 25 1 36 30 33 43 43 20 47 28 37 8 27 12 41 47 32 19 41 21 35 42 15 17 33 33 19
n5 26 38 22 15 15 22 27 14 39 30 5 36 40 21 42 24 41 1 29 38 38 3 43 21 39 44 24 13 7 28 3 40 32 22 25 25 34 42 12 34 8 11 16 15 46 1
n6 18 43 45 8 5 2 29 18 3 34 17 38 18 9 23 23 1 33 32 15 24 24 5 15 3 37 25 42 25 23 34 41 9 1 19 33 20 8 23 22 5 4 32 1 39 36
n7 40 7 3 26 35 17 19 2 45 19 18 25 12 16 20 20 8 32 39 24 36 19 22 37 34 3 43 37 19 7 19 36 2 4 9 4 6 38 20 13 38 7 7 38 42 42
n8 44 33 28 24 42 35 39 44 20 27 45 16 39 7 9 42 2 16 1 6 40 17 13 41 47 33 28 3 27 43 27 42 35 10 29 29 37 33 28 7 19 23 34 30 37 40
n9 34 34 27 16 47 42 43 42 27 22 15 41 15 25 6 7 3 12 44 35 6 45 44 12 19 39 29 31 15 31 7 16 30 9 17 8 9 36 40 17 12 46 12 12 10 29
n10 37 25 13 11 8 43 24 26 4 9 7 5 37 36 10 17 17 41 37 30 12 5 15 32 29 6 2 30 22 5 20 22 47 13 38 36 11 25 38 38 21 43 38 27 47 21
n11 28 35 15 3 25 47 33 4 47 42 16 32 19 44 17 38 21 31 4 9 15 29 14 5 45 1 23 46 24 40 22 29 25 36 21 46 28 14 7 41 10 24 6 21 6 32
n12 10 18 25 21 28 23 13 38 23 21 14 9 24 2 35 3 39 36 35 10 42 33 3 28 41 8 9 36 29 27 4 44 27 43 11 2 29 37 9 14 2 39 43 6 3 24
n13 3 29 10 33 18 39 28 43 44 36 39 40 10 26 13 11 25 30 31 32 35 39 33 20 32 7 33 26 16 15 21 7 37 19 46 14 47 3 27 20 34 1 47 10 40 25
n14 22 32 20 37 13 18 22 47 35 14 21 24 9 29 41 18 16 4 6 19 31 4 28 13 14 20 4 45 46 14 36 9 7 20 43 26 42 35 10 2 25 45 2 18 41 39
n15 45 6 30 28 34 28 46 24 6 10 9 27 43 6 33 16 35 13 33 20 37 23 27 10 38 24 1 33 5 21 45 6 19 11 20 27 36 9 11 40 47 9 20 14 1 34
n16 35 28 42 34 22 36 26 12 24 25 34 28 5 31 36 30 47 43 22 31 5 7 42 6 28 25 18 6 35 34 32 47 17 16 45 11 2 45 17 23 40 19 46 4 18 46
n17 25 39 32 23 21 32 3 30 29 31 3 26 36 12 3 43 38 42 34 4 43 47 46 31 24 42 26 28 39 33 26 4 6 39 13 34 8 23 14 30 46 41 33 22 44 33
n18 29 44 36 30 27 30 34 22 38 6 22 14 41 28 46 35 18 45 9 23 47 32 45 34 17 32 21 41 38 1 18 26 34 30 44 7 5 6 45 27 7 2 15 35 2 18
n19 31 2 8 35 3 27 15 36 30 16 13 21 33 15 5 34 43 38 43 18 9 16 17 4 27 45 38 9 26 17 10 20 10 31 37 39 43 19 44 6 3 8 5 23 8 41
n20 20 15 43 19 4 41 47 40 36 12 10 17 7 46 47 4 22 34 27 37 27 34 2 38 40 40 37 7 17 39 38 19 11 26 12 37 7 11 15 3 29 21 22 41 31 13
n21 12 4 12 31 41 12 23 34 31 33 29 10 28 34 25 36 33 2 46 26 39 41 10 3 15 35 31 29 44 19 37 37 44 3 40 45 1 34 4 32 14 26 31 36 24 16
n22 17 47 16 45 17 5 18 7 17 15 19 19 32 45 11 39 14 29 14 44 34 37 7 25 25 26 13 10 1 32 11 1 8 6 32 13 27 44 3 19 13 31 36 29 4 26
n23 23 11 26 44 1 38 11 3 16 8 38 43 8 17 16 15 12 10 17 14 41 11 16 11 37 47 34 38 18 29 39 10 39 44 18 9 12 29 36 46 6 34 40 44 25 35
n24 19 13 7 12 19 20 20 41 34 4 46 11 29 30 21 21 9 21 8 40 44 31 36 2 4 16 8 5 3 26 14 45 3 46 7 41 13 18 37 43 31 29 25 11 29 38
n25 30 30 4 14 7 24 7 1 42 26 44 6 34 19 38 10 11 28 28 8 3 43 39 9 35 41 6 11 40 22 46 24 28 2 5 15 40 22 29 10 27 32 29 25 22 4
n26 41 27 38 36 2 1 10 45 32 11 33 45 20 42 19 28 45 9 11 7 7 42 24 44 30 15 19 40 9 10 13 35 43 14 3 43 17 40 35 18 37 14 28 20 13 20
n27 5 36 35 18 38 10 1 33 43 18 32 15 45 1 22 6 42 27 3 39 8 2 9 17 36 18 45 34 12 41 31 8 26 5 31 22 3 7 34 31 30 37 14 17 28 22
n28 24 40 5 6 39 34 2 27 12 3 8 47 44 41 32 22 20 17 23 13 13 27 6 23 5 30 47 14 13 11 44 43 36 47 35 6 32 21 8 15 44 22 26 19 20 27
n29 13 24 17 5 45 4 31 21 7 37 11 23 27 38 27 8 36 22 12 16 25 14 47 16 23 14 22 18 20 24 42 2 33 42 10 35 14 39 39 1 1 5 42 42 30 43
n30 7 23 47 43 31 11 42 13 33 32 23 2 26 33 15 2 29 35 21 2 11 28 32 27 11 34 30 12 8 4 17 38 38 21 23 16 45 10 6 45 24 40 11 40 38 47
n31 47 16 2 27 32 7 36 19 37 13 4 8 3 23 2 5 24 18 2 17 18 10 23 42 1 38 27 24 43 45 12 15 31 27 27 23 23 17 16 36 32 10 41 5 16 3
n32 43 19 40 47 30 31 32 39 41 39 36 42 47 10 18 31 13 37 25 42 2 13 12 14 7 12 14 20 33 6 33 12 22 45 1 17 18 32 2 21 11 13 37 34 32 6
n33 6 14 37 41 10 14 30 9 13 23 1 12 25 11 1 33 4 14 13 43 22 35 41 19 44 2 40 16 31 16 43 39 40 40 28 28 21 27 26 5 36 30 10 3 21 7
n34 38 31 23 40 40 25 38 10 19 5 37 18 16 14 31 29 46 25 38 12 16 46 25 29 9 4 32 35 2 44 47 33 4 34 42 31 35 28 41 25 4 35 21 26 45 2
n35 15 21 29 2 33 9 41 15 46 43 26 22 14 24 12 46 30 23 30 29 26 6 8 26 26 46 10 39 4 2 30 31 13 37 39 20 31 26 46 11 45 44 45 31 9 10
n36 32 37 19 46 36 16 14 11 21 44 41 44 30 47 14 1 27 24 47 28 46 8 19 45 33 21 5 8 37 30 29 32 24 35 22 38 15 1 33 16 23 36 3 7 14 23
n37 27 26 34 13 23 15 21 25 26 35 12 46 6 8 26 14 26 47 19 27 45 38 4 7 6 10 11 2 36 38 23 23 46 18 34 19 38 46 47 37 43 20 1 47 26 17
n38 33 41 24 4 11 40 4 35 10 46 35 4 4 4 7 12 32 7 26 47 19 30 34 47 20 28 17 25 14 13 41 30 15 32 36 24 22 31 5 33 16 6 9 45 5 28
n39 46 12 9 17 20 3 25 46 1 41 20 34 13 37 34 40 37 39 7 36 30 25 35 22 42 22 46 19 32 12 35 28 14 15 14 1 33 2 22 44 9 47 24 24 27 14
n40 11 20 44 10 46 13 8 37 25 7 31 13 2 40 28 47 6 19 45 5 10 18 20 30 46 23 12 4 30 20 24 3 21 38 24 12 26 30 25 47 18 3 8 9 34 12
n41 1 17 31 7 12 44 45 16 14 20 43 30 46 35 8 13 40 20 18 11 33 15 21 39 12 13 44 17 47 9 25 14 1 8 16 21 30 47 30 39 26 28 18 13 11 9
n42 21 3 14 9 14 29 37 5 15 29 42 31 23 13 29 44 44 5 10 22 17 44 11 36 10 27 7 15 21 25 6 5 42 29 26 5 4 4 13 4 20 27 4 8 43 37
n43 8 10 21 42 37 45 5 20 18 40 2 39 11 5 44 26 10 15 5 3 14 20 29 35 16 17 15 1 10 8 9 25 5 7 33 44 10 12 31 28 17 33 39 32 15 8
n44 42 42 33 32 43 33 17 6 5 28 28 3 17 27 40 19 31 6 16 45 21 40 1 8 31 29 42 27 45 3 1 13 16 33 8 42 39 24 42 26 39 17 35 16 36 31
n45 36 22 39 25 6 26 16 32 9 47 30 1 35 43 24 25 15 8 36 1 28 9 31 1 8 5 36 32 11 47 2 21 20 23 30 3 16 13 24 8 41 16 23 39 23 5
n46 16 8 18 38 29 46 9 29 22 45 25 7 21 32 45 41 19 44 24 34 32 12 26 43 2 36 35 44 6 35 40 17 45 17 2 30 41 43 32 24 28 25 13 2 19 30
n47 4 5 41 22 44 37 6 17 11 2 24 35 22 39 4 32 34 26 15 46 20 22 37 24 21 31 3 43 41 42 16 46 18 12 15 18 46 5 19 9 22 12 27 46 35 15
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First 32 columns of 64
63N  with 0.0443mapρ =  

k1 k2 k3 k4 k5 k6 k7 k8 k9 k10 k11 k12 k13 k14 k15 k16 k17 k18 k19 k20 k21 k22 k23 k24 k25 k26 k27 k28 k29 k30 k31 k32
n1 29 48 32 30 55 42 40 25 36 3 16 7 41 57 4 61 20 20 11 44 63 55 44 25 55 36 34 56 10 26 63 22
n2 41 20 46 24 10 17 32 4 35 37 3 52 47 50 60 9 34 28 13 3 18 5 58 41 62 48 50 31 14 16 49 25
n3 12 40 60 37 28 3 31 44 25 49 55 1 23 25 38 19 5 2 14 55 1 4 2 12 50 3 60 34 40 38 31 43
n4 50 13 49 60 22 37 9 51 64 48 53 35 13 64 52 17 56 49 5 40 50 34 15 56 10 9 13 1 1 18 42 4
n5 43 30 21 18 19 58 59 56 34 46 2 63 20 11 2 47 37 62 6 18 26 53 49 55 31 1 58 9 39 23 64 28
n6 8 11 9 22 49 41 43 2 16 35 22 20 43 4 29 26 60 3 44 29 30 19 33 51 53 18 57 50 11 48 25 57
n7 2 16 13 63 11 2 16 30 40 30 31 47 52 17 13 30 3 59 45 14 55 26 40 9 61 4 5 63 17 58 53 35
n8 17 37 22 61 43 47 28 58 33 31 62 38 62 52 48 42 39 22 10 26 10 8 62 57 49 60 2 7 64 46 21 46
n9 32 19 26 38 64 26 62 59 13 41 20 59 34 45 51 40 61 41 58 12 9 11 1 38 54 21 25 61 54 39 29 1
n10 63 29 7 29 62 13 29 23 48 62 51 55 8 43 37 62 4 50 60 36 2 35 32 47 15 15 23 64 24 11 33 53
n11 44 54 57 40 57 30 48 57 4 28 45 10 28 7 14 23 62 39 8 15 58 32 64 52 32 20 32 47 63 12 58 23
n12 15 26 58 59 50 46 64 52 59 21 19 30 57 63 16 31 21 56 36 8 13 31 18 50 22 53 48 20 26 61 47 40
n13 1 63 38 55 5 49 12 46 38 36 18 17 11 16 10 63 33 53 38 56 39 51 6 62 60 41 17 43 37 31 15 3
n14 59 4 33 62 15 36 33 11 10 53 25 32 27 24 57 38 28 30 15 51 56 12 48 61 11 19 43 46 50 56 44 29
n15 18 8 64 39 46 6 13 29 24 4 52 51 24 40 31 41 46 64 23 28 6 56 47 28 48 34 62 18 5 6 18 50
n16 5 41 34 48 44 48 19 10 60 24 26 5 10 39 63 43 15 15 56 53 45 40 57 60 30 14 29 19 32 64 38 42
n17 37 12 63 7 24 34 27 64 17 10 11 44 44 55 45 54 54 4 63 59 38 47 28 20 35 51 10 48 8 47 4 12
n18 49 38 8 51 58 28 25 45 31 57 49 49 7 12 11 11 44 9 59 41 42 52 59 39 47 62 19 5 12 14 20 44
n19 34 42 56 14 60 57 4 63 37 50 41 8 64 44 54 15 12 40 52 24 64 20 36 26 40 16 41 49 51 21 23 47
n20 39 22 4 33 13 44 21 50 55 59 43 54 38 21 28 52 36 26 12 48 54 27 42 21 58 38 47 55 28 34 5 10
n21 60 28 14 49 38 1 18 54 6 38 4 6 36 6 36 2 59 35 26 62 21 41 43 14 18 46 22 38 18 57 50 18
n22 48 50 3 25 25 10 37 16 41 13 44 18 33 32 55 57 29 33 53 57 23 15 51 15 44 10 30 4 36 5 30 20
n23 19 32 24 13 9 50 44 18 21 63 8 56 18 62 35 37 49 11 25 49 3 50 50 22 56 2 7 28 52 52 52 55
n24 27 51 12 9 51 38 55 36 49 22 59 21 54 27 3 33 63 31 40 45 17 44 41 31 1 5 31 52 3 44 39 36
n25 36 14 48 56 2 8 50 7 15 43 64 11 42 38 27 56 50 47 62 23 57 63 7 16 41 33 4 12 57 43 61 41
n26 10 44 54 26 47 12 56 35 26 56 50 58 5 28 56 64 48 23 43 32 52 39 34 1 24 45 61 6 38 20 43 9
n27 9 64 15 58 41 25 5 20 18 29 27 50 59 9 61 53 18 45 24 6 7 61 56 59 17 44 20 41 31 37 10 34
n28 55 7 5 31 63 55 17 33 27 60 32 2 22 46 25 36 2 27 18 4 12 57 5 10 42 40 26 42 41 17 34 6
n29 57 61 59 2 21 32 30 21 56 19 35 53 14 8 47 7 45 43 39 30 40 59 52 8 25 57 27 53 55 62 28 48
n30 51 33 28 64 42 21 60 12 50 44 33 12 60 19 23 12 64 34 48 17 25 48 20 19 59 35 42 27 59 13 8 32
n31 40 24 51 1 36 64 45 24 42 26 56 28 55 5 62 51 17 19 33 38 8 54 25 45 57 24 36 21 46 35 46 16
n32 53 59 47 28 6 29 58 55 57 54 15 13 25 31 32 49 27 1 9 2 11 46 17 27 7 37 8 44 25 49 19 52
n33 20 31 25 46 33 51 47 17 47 39 57 48 9 51 8 5 14 6 28 22 41 14 53 2 39 54 1 36 33 22 60 19
n34 46 15 62 41 29 43 35 1 61 47 21 31 45 60 12 3 51 42 64 60 22 21 37 63 14 27 24 60 43 9 26 51
n35 26 55 45 34 4 56 7 26 63 17 34 43 32 2 15 24 47 12 47 19 16 1 30 30 28 49 35 37 61 4 36 15
n36 28 10 61 57 61 53 36 34 44 27 42 26 29 1 40 20 9 25 21 64 5 60 46 23 37 39 55 29 6 36 54 30
n37 42 5 53 11 14 23 57 62 14 51 58 37 49 20 19 35 10 21 29 63 31 22 54 58 33 55 9 40 20 45 16 33
n38 35 58 41 45 52 35 46 27 1 32 7 45 16 30 64 22 6 63 3 58 36 30 21 7 12 52 21 57 58 27 35 58
n39 52 56 36 15 20 27 49 22 8 23 63 42 56 35 44 4 8 46 31 21 37 24 14 36 38 13 15 10 9 53 41 8
n40 6 43 50 5 45 16 10 8 7 58 60 36 21 48 1 14 26 37 34 7 33 28 35 43 16 59 45 62 16 54 37 2
n41 22 49 30 19 23 20 3 41 53 18 37 22 37 49 39 27 58 55 1 54 4 33 24 6 29 12 12 58 34 3 45 38
n42 24 25 35 4 37 15 51 28 52 52 23 3 26 15 49 25 13 54 37 10 60 45 38 37 36 43 11 13 30 10 14 60
n43 58 1 40 21 54 7 14 15 51 5 1 25 30 36 18 60 23 18 30 13 32 43 27 32 23 50 28 25 56 41 22 14
n44 45 27 52 47 35 62 15 39 3 1 36 64 51 13 42 58 35 7 51 1 46 17 29 11 8 6 3 39 4 2 51 61
n45 31 52 39 52 1 22 63 3 2 7 38 15 15 41 17 44 31 13 16 33 15 25 23 53 34 42 40 51 22 1 13 26
n46 38 62 43 6 59 18 38 14 43 45 28 39 40 33 22 50 57 60 4 43 61 6 11 49 64 29 16 15 7 50 9 63
n47 47 60 19 32 26 14 8 60 30 8 24 24 12 54 41 1 41 5 61 5 28 58 26 54 46 11 52 22 35 59 56 45
n48 3 35 17 8 40 9 11 31 11 33 14 29 31 59 33 32 43 38 41 47 14 29 45 44 20 58 18 2 48 25 55 24
n49 33 47 10 35 39 45 61 5 54 6 47 61 53 47 24 21 22 44 27 52 34 38 31 5 2 30 46 17 44 63 12 5
n50 11 21 18 16 32 63 54 53 28 15 6 19 2 22 26 13 19 57 50 35 24 2 16 13 52 56 14 8 13 24 40 56
n51 4 17 16 42 8 61 39 19 12 40 12 27 61 23 53 8 40 48 46 50 43 62 9 29 4 47 38 32 23 8 27 27
n52 56 57 11 53 48 19 52 48 29 9 5 41 50 53 34 10 7 17 32 46 53 23 39 34 43 17 39 24 27 15 3 13
n53 21 3 2 17 30 24 22 38 62 12 48 46 46 34 59 34 55 24 2 39 62 36 12 33 51 63 56 59 53 32 62 49
n54 23 6 23 12 53 59 6 6 20 14 40 23 4 3 30 18 53 36 7 16 29 10 8 35 13 7 6 11 42 55 2 11
n55 64 34 42 50 16 54 2 42 9 25 46 57 17 37 5 29 25 61 49 42 19 37 22 17 63 32 63 26 47 60 7 59
n56 25 9 27 54 34 40 41 40 22 16 39 9 6 61 21 59 52 29 20 20 49 13 61 3 6 26 49 33 45 51 1 64
n57 13 39 44 36 56 5 23 43 46 42 10 62 39 10 7 45 16 16 55 61 48 3 4 42 3 22 44 16 62 29 57 31
n58 14 36 20 27 3 31 34 61 45 61 30 4 48 26 46 46 42 58 54 9 20 7 63 4 5 31 64 30 15 40 24 17
n59 62 53 31 43 27 39 1 9 32 64 13 33 63 29 20 55 38 10 17 27 35 16 3 18 21 61 54 3 2 42 48 54
n60 30 45 55 20 31 60 24 13 19 55 9 34 19 58 43 28 30 32 42 25 59 42 55 24 45 8 53 35 29 19 11 7
n61 16 23 6 3 12 33 20 49 5 34 54 40 58 56 6 16 11 14 19 37 47 64 19 46 9 25 51 14 60 7 17 62
n62 7 18 29 44 18 4 53 47 58 20 29 60 1 18 50 6 24 8 22 11 51 49 10 48 19 23 37 45 19 28 6 39
n63 54 2 37 10 7 11 26 32 39 2 17 14 35 14 9 39 1 51 35 31 27 18 60 40 27 28 33 23 49 30 32 21
n64 61 46 1 23 17 52 42 37 23 11 61 16 3 42 58 48 32 52 57 34 44 9 13 64 26 64 59 54 21 33 59 37  
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Final 31 columns of 64
63N  with 0.0443mapρ =  

k33 k34 k35 k36 k37 k38 k39 k40 k41 k42 k43 k44 k45 k46 k47 k48 k49 k50 k51 k52 k53 k54 k55 k56 k57 k58 k59 k60 k61 k62 k63
n1 58 62 30 53 28 24 1 6 50 62 9 51 39 38 46 2 10 16 53 37 17 58 47 50 42 29 14 60 8 41 20
n2 10 10 53 56 5 29 32 11 1 34 43 27 56 34 10 58 35 26 64 16 46 53 25 19 10 11 18 52 16 59 22
n3 28 35 56 16 30 7 39 53 61 46 41 17 55 23 61 27 57 13 58 17 40 47 35 37 44 63 5 37 23 23 14
n4 30 17 12 6 36 47 11 21 44 24 57 52 36 21 37 8 36 18 52 22 36 36 18 48 32 33 61 62 22 3 15
n5 46 50 44 29 20 2 40 30 32 49 23 24 41 6 44 44 63 42 45 20 11 27 51 35 4 62 50 27 56 17 51
n6 53 36 19 1 26 43 7 25 2 1 35 16 49 49 33 5 55 33 23 10 30 12 54 56 26 15 63 29 11 2 6
n7 14 4 10 26 58 42 46 45 40 31 31 55 31 28 63 40 45 41 49 52 16 8 59 10 13 18 29 58 28 30 42
n8 42 60 28 19 57 22 43 18 27 9 12 1 17 33 59 50 34 57 63 43 19 59 41 60 31 14 32 41 31 29 49
n9 56 33 54 25 27 58 15 16 62 40 27 58 15 47 29 51 30 7 25 3 18 38 20 11 40 27 8 45 24 7 63
n10 23 41 8 5 64 13 36 37 12 43 15 26 60 15 14 25 14 32 30 2 35 50 38 53 33 31 26 35 19 64 36
n11 39 12 3 23 56 44 64 57 29 57 64 33 40 59 26 39 40 15 39 24 52 28 23 43 38 8 25 5 4 53 30
n12 34 25 16 60 59 49 19 39 10 16 36 5 57 9 24 6 39 30 12 35 62 10 44 6 53 60 2 18 26 28 31
n13 3 23 49 14 14 27 18 33 8 6 30 20 2 36 18 32 21 14 42 6 48 57 61 16 19 19 24 1 41 48 23
n14 64 9 43 34 8 10 9 43 42 11 34 35 43 22 62 11 4 35 2 62 49 43 40 38 24 10 4 17 57 52 58
n15 60 30 15 30 6 46 59 64 20 20 2 29 14 50 56 37 3 6 8 38 7 48 21 21 12 42 27 26 42 24 12
n16 61 48 26 41 12 62 61 36 26 47 49 53 61 42 35 61 29 48 43 1 22 45 19 1 41 57 57 23 38 45 61
n17 55 3 34 36 41 14 58 34 38 37 48 4 44 24 42 13 47 27 47 26 32 9 36 57 1 53 52 30 29 63 57
n18 13 32 46 38 24 48 22 9 54 17 22 45 64 52 47 17 64 29 24 61 42 40 29 9 2 58 1 20 9 37 50
n19 1 26 2 50 4 19 5 47 15 45 16 19 32 20 15 19 59 24 10 36 2 52 14 33 5 22 35 28 48 10 56
n20 45 15 13 61 34 38 63 19 58 36 19 2 62 44 11 30 18 60 26 9 25 25 5 26 63 28 12 19 59 5 1
n21 17 49 32 57 43 39 10 60 18 41 21 11 16 2 31 56 1 61 27 7 28 42 28 27 23 56 42 36 3 13 32
n22 62 51 14 58 45 50 25 40 17 38 50 28 8 7 12 23 41 9 62 48 63 3 42 34 3 16 3 14 54 1 38
n23 4 37 1 64 54 25 27 44 41 14 62 37 1 53 36 14 32 5 13 44 27 54 6 29 45 54 40 25 30 46 18
n24 20 6 61 35 15 57 28 46 48 2 39 9 48 5 30 62 26 8 59 63 26 60 16 30 49 9 43 42 61 50 35
n25 38 57 57 31 18 9 55 13 19 22 28 15 59 13 3 41 44 20 11 34 10 29 2 41 34 20 28 33 10 22 25
n26 8 34 27 51 39 12 6 56 28 26 10 21 47 51 50 22 23 50 54 33 45 22 55 2 61 2 64 43 32 33 52
n27 40 13 64 48 19 4 26 62 57 56 37 42 30 27 7 7 49 19 32 41 54 20 9 46 48 41 56 51 12 14 28
n28 57 46 42 40 10 51 52 41 21 33 59 7 10 29 58 33 58 47 16 47 60 33 34 4 22 7 59 54 35 55 11
n29 63 22 39 9 46 36 33 20 9 29 26 40 9 1 57 3 62 38 40 8 33 61 22 8 50 17 9 53 40 20 19
n30 29 20 4 37 2 20 44 29 35 25 44 63 20 25 21 4 11 59 60 30 29 37 57 52 52 64 44 48 62 60 44
n31 15 1 18 10 33 45 8 7 49 44 4 56 25 4 52 60 6 54 31 55 39 4 15 25 21 45 34 7 2 47 3
n32 18 43 33 46 9 59 56 52 13 23 3 64 52 57 51 29 13 31 36 27 34 7 30 61 8 6 22 34 36 6 43
n33 47 5 59 3 17 35 4 61 4 59 14 13 13 41 22 35 17 21 34 21 24 2 13 55 43 61 38 13 53 32 46
n34 27 47 63 49 40 21 49 42 63 61 11 23 12 48 45 24 31 45 56 42 31 15 52 7 30 5 51 6 17 11 7
n35 49 64 22 44 49 30 12 54 60 13 52 34 63 17 34 46 12 12 1 23 12 18 39 23 9 30 45 64 25 56 27
n36 11 39 58 43 61 17 48 14 37 19 58 50 5 46 2 28 42 43 14 15 9 6 27 54 29 1 15 49 58 38 55
n37 43 53 17 20 16 23 30 35 7 53 42 60 28 39 1 55 37 11 17 58 43 39 64 5 58 44 48 63 47 21 17
n38 32 40 24 11 21 61 35 2 52 8 38 10 53 40 4 26 16 17 61 56 8 5 43 12 11 52 54 31 46 35 10
n39 54 42 50 52 53 56 24 58 55 18 8 43 37 62 8 10 54 58 19 12 23 62 56 42 14 36 53 4 49 61 8
n40 36 61 5 47 32 8 41 1 46 7 46 57 22 12 43 48 19 36 51 29 59 24 12 49 16 48 39 3 51 12 48
n41 59 21 35 42 23 6 16 5 11 10 25 49 50 63 25 57 61 64 4 50 50 19 53 32 59 47 31 15 15 36 59
n42 41 2 52 63 62 31 21 4 51 35 51 8 24 43 60 64 7 3 7 11 37 44 62 59 39 46 49 32 44 19 33
n43 25 27 36 7 60 15 2 63 31 21 63 47 54 64 20 54 43 52 55 57 3 55 24 31 35 39 23 8 55 4 13
n44 7 55 40 32 13 33 38 17 30 32 60 25 23 30 49 31 15 56 33 13 55 46 49 22 55 50 16 16 50 18 21
n45 12 7 23 28 63 54 34 10 25 63 32 18 34 18 39 20 46 62 3 46 20 63 11 13 17 37 55 47 52 8 62
n46 22 59 47 12 29 26 20 50 33 50 56 22 19 37 40 36 22 63 15 32 41 1 1 20 20 34 13 57 45 57 37
n47 33 29 25 4 37 5 37 8 47 51 13 6 26 58 9 38 5 34 21 54 58 17 45 18 28 21 30 55 64 26 24
n48 6 24 29 22 3 63 42 31 45 60 40 48 51 3 53 18 50 46 5 18 4 14 63 58 60 4 11 24 60 43 5
n49 9 28 11 15 1 11 50 27 39 54 61 14 33 60 41 45 24 28 6 19 47 51 58 44 6 25 21 38 1 9 39
n50 52 18 21 21 25 1 54 55 56 27 33 59 46 14 13 21 8 55 41 49 53 64 10 36 37 3 41 22 13 15 41
n51 35 56 7 17 55 32 17 48 24 52 5 38 45 61 55 63 56 22 50 28 61 34 3 47 36 32 6 50 63 51 29
n52 21 45 48 27 47 3 53 22 6 3 24 62 38 10 64 42 33 2 9 25 21 13 7 17 62 23 62 9 37 42 9
n53 2 58 62 24 50 53 60 49 36 42 29 54 35 19 23 15 27 10 18 40 64 49 46 39 18 51 58 12 43 25 53
n54 16 31 37 62 51 18 57 15 3 55 1 32 42 32 27 12 20 4 46 51 13 23 48 15 46 40 17 40 34 44 40
n55 31 38 45 54 35 64 3 24 14 64 54 44 58 35 48 49 25 25 48 45 44 30 31 64 54 13 60 21 33 34 47
n56 24 19 38 39 38 28 13 26 59 28 7 61 11 16 5 59 60 40 22 5 56 26 37 28 7 35 37 39 39 58 2
n57 50 8 41 55 31 52 51 12 5 30 18 39 6 45 28 34 38 49 28 53 51 56 8 63 15 49 46 59 27 39 4
n58 37 52 60 2 48 40 31 3 16 58 55 41 21 55 38 1 9 37 29 59 6 41 17 24 27 43 33 11 21 54 26
n59 51 11 6 13 42 34 47 28 53 39 17 31 3 26 16 52 51 1 35 31 14 35 50 14 57 24 36 10 18 40 60
n60 26 44 55 8 52 60 62 59 34 5 20 30 29 11 6 53 28 53 20 64 38 32 60 62 56 55 7 61 5 16 45
n61 48 14 51 33 44 37 23 38 22 15 53 46 27 31 19 16 2 51 57 4 15 16 26 3 25 26 10 44 6 31 54
n62 44 63 9 45 11 41 14 32 43 48 47 12 4 8 17 47 52 44 37 60 5 31 32 51 51 12 20 2 7 62 34
n63 5 54 20 18 7 55 29 23 64 4 6 3 18 54 32 9 48 23 38 14 57 21 4 40 64 38 47 46 20 49 64
n64 19 16 31 59 22 16 45 51 23 12 45 36 7 56 54 43 53 39 44 39 1 11 33 45 47 59 19 56 14 27 16  
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APPENDIX B. PAIRWISE PLOT OF FACTORS IN 17
16N  

Appendix B displays a pairwise plot of the factors in 17
16N . The dispersion of 

points in each pairwise plot shows reasonable space filling properties. 
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APPENDIX C. MAJOR ROGINSKI’S DESIGN 

This Appendix lists the MFML design matrix for Major Roginski’s experiment.  

The design is split into eight sections.  Each section heading describes the design points 

and the factors shown in the section.  It also includes the nonorthogonality of the design. 
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Roginski MFML Section 1:  n = 1 thru 72, k = 1 thru 11 with 0.0593mapρ = . 

ESU FO Police Traffic Time OP Panic Num Ag1 Num Ag2 Num Ag3 Num Ag4 Num Gun Num EMT SJ
0 0 0 1 1 41 45 141 103 63 64
0 0 1 1 1 82 6 117 3 103 38
0 1 0 1 1 7 18 127 53 67 107
0 1 1 1 1 87 86 111 14 24 66
1 0 0 1 1 5 118 73 80 12 48
1 0 1 1 1 132 82 63 47 86 97
1 1 0 1 1 32 109 138 66 66 18
1 1 1 1 1 110 41 86 96 21 102
0 0 0 1 2 143 137 104 120 47 88
0 0 1 1 2 25 127 122 54 16 128
0 1 0 1 2 39 32 107 62 51 65
0 1 1 1 2 8 139 67 51 7 129
1 0 0 1 2 40 54 144 7 130 21
1 0 1 1 2 56 99 109 16 141 25
1 1 0 1 2 117 26 94 94 89 42
1 1 1 1 2 37 89 78 46 90 54
0 0 0 1 3 10 1 9 63 107 31
0 0 1 1 3 130 104 75 56 116 71
0 1 0 1 3 42 62 39 134 108 92
0 1 1 1 3 89 126 85 83 50 16
1 0 0 1 3 100 21 130 68 129 33
1 0 1 1 3 46 129 14 12 52 3
1 1 0 1 3 124 92 136 114 98 67
1 1 1 1 3 58 134 17 13 118 117
0 0 0 2 1 74 74 137 87 126 137
0 0 1 2 1 90 13 84 109 32 43
0 1 0 2 1 57 73 108 55 142 40
0 1 1 2 1 33 57 116 122 78 96
1 0 0 2 1 125 24 10 88 82 76
1 0 1 2 1 65 125 81 121 65 29
1 1 0 2 1 92 63 56 4 15 115
1 1 1 2 1 20 90 4 113 48 105
0 0 0 2 2 72 2 103 44 18 94
0 0 1 2 2 69 39 93 99 54 13
0 1 0 2 2 77 12 15 82 72 87
0 1 1 2 2 119 43 123 115 95 37
1 0 0 2 2 78 84 27 26 33 47
1 0 1 2 2 54 93 139 127 41 132
1 1 0 2 2 144 96 47 110 76 104
1 1 1 2 2 38 19 92 141 131 89
0 0 0 2 3 18 120 43 59 55 100
0 0 1 2 3 102 94 90 61 59 60
0 1 0 2 3 120 35 61 36 23 27
0 1 1 2 3 126 80 70 101 94 93
1 0 0 2 3 133 77 51 21 34 144
1 0 1 2 3 31 66 6 131 2 116
1 1 0 2 3 3 107 35 102 111 45
1 1 1 2 3 95 131 95 75 125 142
0 0 0 3 1 75 4 29 116 9 62
0 0 1 3 1 79 70 60 15 68 61
0 1 0 3 1 24 58 50 49 133 127
0 1 1 3 1 43 88 24 29 45 82
1 0 0 3 1 51 115 32 144 20 17
1 0 1 3 1 6 108 99 105 123 81
1 1 0 3 1 98 10 118 97 113 85
1 1 1 3 1 88 119 68 48 140 108
0 0 0 3 2 45 31 45 140 87 103
0 0 1 3 2 36 56 40 25 97 10
0 1 0 3 2 13 34 97 60 144 99
0 1 1 3 2 1 128 131 117 73 68
1 0 0 3 2 35 117 82 9 61 41
1 0 1 3 2 115 9 129 11 14 140
1 1 0 3 2 61 52 112 130 37 28
1 1 1 3 2 68 15 102 40 26 141
0 0 0 3 3 67 51 72 57 110 118
0 0 1 3 3 113 101 135 67 60 124
0 1 0 3 3 99 44 36 108 44 26
0 1 1 3 3 52 23 21 50 127 12
1 0 0 3 3 97 17 33 73 42 131
1 0 1 3 3 129 124 66 137 119 74
1 1 0 3 3 108 69 42 107 8 23
1 1 1 3 3 34 33 26 98 81 6
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Roginski MFML Section 2:  n = 73 thru 144, k = 1 thru 11 with 0.0593mapρ = . 

ESU FO Police Traffic Time OP Panic Num Ag1 Num Ag2 Num Ag3 Num Ag4 Num Gun Num EMT SJ
0 0 0 1 1 136 46 16 125 38 51
0 0 1 1 1 9 71 124 65 17 55
0 1 0 1 1 26 95 54 39 3 2
0 1 1 1 1 116 49 28 85 100 126
1 0 0 1 1 91 47 134 32 56 86
1 0 1 1 1 27 75 5 76 70 134
1 1 0 1 1 93 143 87 106 22 39
1 1 1 1 1 123 91 44 81 102 24
0 0 0 1 2 21 11 37 138 35 114
0 0 1 1 2 94 123 46 17 84 98
0 1 0 1 2 64 64 114 86 71 5
0 1 1 1 2 127 140 1 84 120 9
1 0 0 1 2 128 112 98 78 40 14
1 0 1 1 2 140 27 3 132 83 35
1 1 0 1 2 62 130 106 41 29 8
1 1 1 1 2 30 8 100 58 121 83
0 0 0 1 3 50 138 74 129 132 58
0 0 1 1 3 134 59 30 42 136 90
0 1 0 1 3 85 114 58 93 58 56
0 1 1 1 3 86 5 55 22 117 95
1 0 0 1 3 44 53 7 30 69 7
1 0 1 1 3 80 102 132 139 128 20
1 1 0 1 3 19 76 115 10 36 91
1 1 1 1 3 15 14 91 136 39 123
0 0 0 2 1 103 113 48 128 1 22
0 0 1 2 1 106 50 34 74 62 112
0 1 0 2 1 29 25 77 23 53 84
0 1 1 2 1 84 67 69 2 114 19
1 0 0 2 1 131 22 133 123 137 44
1 0 1 2 1 70 105 126 20 57 106
1 1 0 2 1 14 3 12 77 91 57
1 1 1 2 1 122 142 89 95 74 32
0 0 0 2 2 16 7 105 135 49 52
0 0 1 2 2 59 87 121 143 28 50
0 1 0 2 2 63 42 142 38 31 75
0 1 1 2 2 76 141 88 19 139 72
1 0 0 2 2 11 121 8 112 124 101
1 0 1 2 2 12 30 52 91 138 30
1 1 0 2 2 17 133 18 24 79 36
1 1 1 2 2 114 83 120 124 106 49
0 0 0 2 3 83 97 128 52 134 4
0 0 1 2 3 137 65 53 37 96 63
0 1 0 2 3 66 110 83 31 115 70
0 1 1 2 3 48 40 2 111 112 73
1 0 0 2 3 71 122 62 28 104 139
1 0 1 2 3 104 81 41 69 6 34
1 1 0 2 3 28 132 31 119 105 121
1 1 1 2 3 109 55 125 64 80 78
0 0 0 3 1 4 135 119 118 19 113
0 0 1 3 1 112 116 65 35 101 130
0 1 0 3 1 60 20 80 5 143 119
0 1 1 3 1 53 79 11 142 93 138
1 0 0 3 1 118 38 23 27 5 15
1 0 1 3 1 135 48 38 6 30 109
1 1 0 3 1 101 68 59 72 25 59
1 1 1 3 1 138 111 76 92 92 69
0 0 0 3 2 111 61 20 33 64 143
0 0 1 3 2 121 100 113 100 75 79
0 1 0 3 2 55 103 140 79 11 133
0 1 1 3 2 105 144 19 18 88 110
1 0 0 3 2 49 136 64 45 13 77
1 0 1 3 2 107 29 25 104 77 125
1 1 0 3 2 23 36 49 34 4 11
1 1 1 3 2 142 37 101 1 43 53
0 0 0 3 3 141 78 79 90 10 111
0 0 1 3 3 47 28 143 43 27 136
0 1 0 3 3 22 85 13 89 122 122
0 1 1 3 3 96 72 71 71 135 80
1 0 0 3 3 2 60 57 8 99 1
1 0 1 3 3 139 16 96 126 85 46
1 1 0 3 3 81 106 22 70 46 120
1 1 1 3 3 73 98 110 133 109 135
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Roginski MFML Section 3:  n = 1 thru 72, k = 12 thru 22 with 0.0593mapρ = . 

Num EMT MM Num ESU1 Num ESU2 Num ESU3 Num ESU4 Num ESU5 Num Foll1 Num Foll2 Num Foll3 Num Traff1 Num Traff2
66 58 113 110 36 31 106 11 89 54 134
85 118 48 113 116 96 144 53 91 100 124
99 66 130 1 93 69 99 135 127 118 99
27 16 19 21 144 93 11 125 93 73 107
53 82 142 105 64 66 9 130 2 29 73

144 22 5 42 139 51 38 25 74 67 138
118 26 31 50 114 2 128 94 38 70 1
139 52 139 72 23 75 119 13 60 51 47
143 70 84 139 121 35 44 56 138 110 116
76 112 36 124 123 101 140 29 112 104 75
84 116 9 6 87 38 96 137 9 81 130
89 109 88 112 3 26 108 139 115 55 62

138 140 1 44 24 104 27 114 114 139 128
36 51 49 101 90 4 15 1 46 123 117
68 86 2 45 72 57 80 120 141 117 3
21 43 21 94 118 5 28 133 139 124 103
3 48 42 51 20 99 41 32 102 30 120

17 142 26 141 16 54 87 110 59 72 17
121 105 123 8 119 128 138 33 35 105 57

9 101 92 65 79 133 71 16 65 5 49
95 122 32 119 5 33 36 104 5 21 110
25 59 134 34 31 7 107 119 72 43 119
55 67 4 4 96 107 42 127 85 12 66
91 83 18 129 97 137 60 132 86 102 92
19 61 116 48 82 15 53 44 56 62 141
15 130 30 16 73 88 58 93 7 15 40
10 92 40 47 4 71 94 99 131 4 14

134 98 78 69 138 92 37 62 83 115 34
59 4 109 24 135 70 47 124 140 17 33
80 75 33 23 41 14 129 37 73 39 74

123 25 25 15 55 52 25 9 16 60 18
81 115 60 11 9 84 83 48 47 82 91
18 5 121 116 14 109 32 90 25 93 98
56 108 83 106 120 82 30 118 36 53 26

117 12 115 138 74 126 110 138 69 37 123
58 56 105 12 2 132 76 105 105 74 114
93 141 43 71 80 36 122 28 19 25 93
29 29 77 122 126 115 115 116 33 42 21
67 57 70 87 63 81 65 27 144 38 53
7 106 46 35 109 49 56 5 37 103 139

41 55 95 85 110 60 141 70 22 133 58
94 64 124 67 133 43 13 109 8 66 121
77 138 135 54 105 11 121 122 137 32 41
35 94 6 142 50 64 130 134 39 40 105

136 128 122 9 54 98 86 76 84 130 135
20 62 37 84 47 1 20 111 50 31 68
96 124 57 126 88 10 64 50 106 135 5

108 30 15 81 32 118 31 126 11 45 76
62 18 131 144 104 139 69 101 130 16 28

105 71 55 33 38 83 131 8 81 10 96
116 47 62 82 39 16 75 65 32 83 30
130 36 11 134 134 131 120 112 57 76 132

4 76 41 41 70 114 135 31 126 114 109
129 46 87 25 68 22 2 107 113 89 29
13 74 81 52 142 61 85 103 109 87 12

104 17 137 86 115 37 90 36 24 121 95
97 15 10 135 46 80 82 52 49 112 82

126 44 13 78 128 110 62 20 99 71 37
64 110 54 115 37 103 112 141 116 86 65

140 103 140 137 27 29 74 4 104 34 101
82 132 136 88 99 94 97 129 88 20 69

131 32 110 74 21 20 43 6 28 99 45
107 117 129 40 49 86 88 98 76 92 39
70 38 47 79 43 32 68 15 64 11 52
34 133 103 64 122 143 102 77 94 106 24
74 144 72 18 75 105 109 74 6 127 6
57 27 28 133 84 27 104 80 78 19 125
42 90 125 140 86 142 81 55 80 131 59
98 79 58 76 89 89 72 18 110 14 61

122 63 38 19 66 129 3 23 132 2 94
83 97 90 63 7 3 100 83 42 126 50

109 88 44 95 129 8 67 40 107 22 60
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Roginski MFML Section 4:  n = 73 thru 144, k = 12 thru 22 with 0.0593mapρ = . 

Num EMT MM Num ESU1 Num ESU2 Num ESU3 Num ESU4 Num ESU5 Num Foll1 Num Foll2 Num Foll3 Num Traff1 Num Traff2
102 53 63 37 26 113 103 140 29 136 86

45 45 23 58 33 117 18 60 120 132 8
50 139 66 31 76 87 39 21 44 44 15
72 41 102 98 17 21 1 87 61 61 87
69 134 141 66 35 62 63 113 41 56 112
79 31 59 14 22 63 34 85 90 75 77

1 6 52 77 28 18 6 46 63 50 84
61 13 119 43 56 140 111 49 21 119 137

125 113 144 114 112 34 48 84 117 107 143
24 69 106 59 52 144 23 7 68 95 11
23 54 97 143 131 100 59 97 17 18 111
75 102 126 75 77 48 14 100 51 141 72

112 143 74 30 132 91 52 96 1 28 129
128 20 132 56 78 111 133 121 27 108 7
133 37 3 130 57 76 116 117 103 129 104

6 1 51 57 71 40 95 75 108 68 4
111 10 35 90 19 122 78 106 23 79 90
40 78 67 97 108 23 125 57 79 111 102
65 68 143 61 117 24 29 42 34 88 136

142 42 89 36 60 25 105 59 67 125 19
132 35 34 17 67 78 4 10 143 65 71

88 107 118 27 100 55 139 14 121 26 88
92 87 85 83 113 120 21 72 10 33 51
14 104 50 127 42 47 35 54 97 134 127
63 85 24 99 34 9 77 79 136 122 126

2 123 29 121 98 121 51 19 4 69 122
37 96 64 28 48 42 70 142 119 140 97
54 49 65 89 18 44 22 108 48 84 16

103 33 14 132 1 45 84 67 53 63 79
101 91 99 13 53 73 126 88 54 138 115
100 39 127 32 107 53 73 143 87 3 142
135 28 117 55 15 134 8 131 66 137 44
120 95 107 104 51 74 12 68 14 80 22
113 40 76 46 81 90 17 78 77 49 10

78 50 111 131 59 119 50 45 124 109 54
87 9 100 96 111 39 127 66 118 6 100
26 100 133 49 61 19 49 43 52 128 36

127 3 73 29 40 68 137 38 43 13 25
44 77 80 107 65 125 26 86 12 59 20

119 89 68 120 124 79 57 81 82 144 27
71 119 108 92 10 136 55 91 100 35 106
52 81 94 93 6 30 123 136 45 23 23
11 84 114 102 103 17 89 24 71 96 35
46 114 39 108 92 127 45 39 3 97 133
43 7 101 100 45 59 142 47 95 48 64
32 65 93 62 25 12 93 73 134 113 85

114 34 8 20 83 95 132 128 20 1 131
12 24 128 60 143 50 136 71 101 27 48
33 137 27 7 44 106 118 17 26 24 78
60 111 112 38 140 77 40 102 96 47 80
86 120 56 73 130 41 16 92 15 7 9
47 131 91 70 69 138 54 144 128 91 38

137 135 16 109 30 85 98 51 125 78 56
30 129 45 2 127 28 5 123 129 41 118
49 19 17 22 106 58 134 34 31 116 2

124 125 82 125 101 65 7 2 135 46 42
39 136 12 91 8 123 91 12 111 98 13
8 11 7 53 137 102 33 64 92 143 83

16 14 53 128 85 67 143 115 62 101 70
48 73 138 111 13 46 10 69 75 57 32
51 23 69 26 102 130 113 82 142 36 43
73 121 20 5 95 6 79 89 13 120 81
28 2 104 68 141 116 19 22 55 142 113
22 8 96 103 12 141 101 35 30 94 108

110 93 61 118 94 97 66 61 70 58 31
141 72 75 80 29 124 24 41 133 9 144
90 127 71 123 62 135 61 58 122 8 89
5 99 120 10 11 108 124 26 123 85 140

106 60 79 39 91 112 114 30 18 90 67
38 126 86 117 125 56 92 3 40 64 55

115 80 22 136 136 13 117 95 58 52 46
31 21 98 3 58 72 46 63 98 77 63
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Roginski MFML Section 5:  n = 1 thru 72, k = 23 thru 33 with 0.0593mapρ = . 

Num Traff3 Num Traff4 Num Traff5 Num Traff6 Num Traff7 Num Traff8 Num Traff9 Num Traff10 Num Traff11 Num Traff12 Desire Civ
143 42 69 6 86 69 26 69 140 6 83
80 122 45 107 130 89 19 111 109 79 110

141 95 48 100 45 41 122 85 16 128 13
69 55 84 127 112 91 116 123 41 45 131
51 101 3 1 18 68 99 127 144 125 71
54 11 39 123 26 48 87 65 82 85 27
96 39 15 16 40 58 121 93 37 44 44
8 90 97 73 58 64 128 143 28 40 29

21 74 26 63 114 119 8 17 87 2 67
53 38 142 72 133 56 70 94 129 115 69

135 136 9 86 87 98 94 28 59 97 51
43 72 114 102 125 34 76 101 2 37 121
3 85 137 80 100 2 55 24 1 68 38

11 128 96 79 54 110 88 41 89 102 15
74 89 1 49 21 44 5 141 133 12 79

123 70 77 11 30 61 54 116 8 41 136
77 135 87 130 52 103 4 42 101 33 129

103 97 6 81 47 32 100 52 31 136 80
125 49 63 62 13 95 82 71 22 17 85
20 77 132 29 102 12 20 55 43 90 10

112 65 107 133 62 57 83 110 30 42 143
84 58 8 9 41 33 96 45 15 51 105

109 81 80 7 77 9 68 72 124 23 4
129 34 81 45 74 27 36 60 23 14 89
48 68 32 134 73 25 40 137 38 36 58
6 41 2 113 116 144 136 15 56 92 111

127 24 131 10 113 24 28 76 75 137 5
23 51 125 139 106 81 3 35 76 66 144
71 141 53 76 7 73 124 49 67 122 33

139 54 138 93 4 23 133 89 105 71 140
136 99 144 44 56 108 72 11 73 98 28
105 5 28 88 55 124 80 135 19 82 14
126 30 75 98 63 13 71 6 92 112 48
64 118 121 54 44 126 135 106 78 15 84
22 69 33 66 136 35 35 112 9 109 9
55 123 111 106 94 120 144 142 126 55 132
31 31 13 117 39 46 50 104 143 121 130
50 108 70 55 131 80 24 12 6 69 127

104 133 16 39 128 82 66 37 80 135 18
138 15 21 84 138 37 109 48 69 61 61
120 137 128 42 65 1 14 80 93 56 109
121 139 85 97 70 51 79 128 68 75 115
73 14 10 50 135 72 29 105 25 63 43
90 18 31 23 107 117 60 13 120 104 64
9 116 59 46 6 5 41 22 36 77 126

44 60 88 109 67 18 11 134 96 11 22
83 125 65 141 12 105 92 118 81 119 34

119 40 139 83 9 76 134 59 79 19 45
82 110 73 135 28 50 63 29 18 89 49
57 82 64 142 48 85 48 114 21 120 133

101 71 105 17 27 11 25 91 94 143 90
93 114 60 24 143 60 143 61 95 139 104

142 35 124 115 93 10 12 16 7 84 25
70 86 104 77 115 90 103 124 74 111 118
75 44 123 56 105 67 119 88 137 28 26
68 115 34 4 78 36 53 2 48 32 31
32 104 94 69 83 99 39 130 4 54 16

107 79 11 143 10 88 9 136 97 21 35
27 98 66 40 124 132 43 79 108 39 82
89 144 20 104 81 66 97 31 42 25 46

110 29 38 92 117 113 137 108 20 132 8
114 12 51 14 119 74 91 30 139 27 54
61 75 134 75 43 102 38 25 132 124 139

144 119 49 70 15 143 1 36 91 116 56
10 4 117 35 24 15 7 86 134 96 11

137 120 140 94 88 93 84 75 11 113 76
115 94 101 22 142 141 102 138 70 34 37
124 96 54 103 66 4 90 122 46 18 12
49 63 122 122 91 40 126 126 62 7 75
45 21 62 65 120 21 78 132 86 106 59
33 103 136 21 111 39 56 70 26 108 23
81 16 93 71 129 6 110 39 90 127 94
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Roginski MFML Section 6:  n = 73 thru 144, k = 23 thru 33 with 0.0593mapρ = . 

Num Traff3 Num Traff4 Num Traff5 Num Traff6 Num Traff7 Num Traff8 Num Traff9 Num Traff10 Num Traff11 Num Traff12 Desire Civ
58 113 78 59 137 43 106 144 113 58 124
30 76 5 2 60 104 104 131 13 62 98
24 142 47 87 89 20 31 81 66 4 68
76 140 29 91 122 38 57 140 117 64 102
95 91 27 112 92 75 81 27 35 49 41
37 78 108 57 132 137 141 56 121 26 81
60 27 40 116 79 16 75 20 27 100 92
86 87 129 38 20 70 30 82 61 10 73

113 43 82 74 69 115 33 120 142 99 108
63 134 95 52 123 86 89 113 14 43 106
40 59 119 13 49 83 47 119 53 93 134

122 36 98 90 80 59 139 109 130 31 7
85 143 103 8 68 131 51 90 44 30 52
36 45 42 136 46 55 49 38 115 94 112
97 138 55 118 35 84 98 10 128 117 70
56 109 14 105 84 19 114 34 111 88 50

100 57 37 108 16 116 42 99 112 72 72
47 132 74 85 141 22 118 96 98 107 24
79 56 116 128 97 30 62 64 60 20 101
92 66 79 36 139 8 74 58 12 65 125

111 33 89 18 121 114 32 53 54 138 135
62 67 12 51 8 96 120 5 34 1 141
88 10 43 96 96 3 123 133 136 130 88
39 92 110 34 11 135 115 32 40 57 21
42 112 109 37 53 14 108 97 114 142 87

128 127 91 58 38 134 37 84 10 140 95
26 22 18 138 31 87 59 62 45 24 122
13 28 113 33 72 121 10 95 3 80 60
18 17 71 99 57 63 22 78 17 105 96
12 6 25 41 61 136 13 139 141 74 1

108 62 133 78 37 139 16 67 33 129 3
133 52 35 89 95 101 15 47 125 114 17

1 26 67 15 2 65 107 74 65 126 66
118 73 56 5 85 52 67 77 47 81 86
134 107 76 61 140 62 125 7 110 60 113

4 2 19 32 32 78 45 68 32 47 97
65 64 102 95 109 129 58 1 64 131 63
91 124 58 12 144 100 46 51 83 3 78
29 100 7 31 134 112 18 14 118 8 99
17 9 86 140 127 127 142 33 5 101 39
98 111 99 137 14 125 27 26 116 118 2
7 117 126 120 29 28 64 8 122 16 117

67 84 36 121 90 111 127 100 135 70 32
25 3 4 3 34 26 129 4 138 73 103
46 37 127 27 5 140 131 129 58 144 114

140 20 90 124 71 138 65 23 100 46 93
38 19 112 119 126 123 112 21 39 59 55
87 48 141 47 17 54 101 18 99 91 138
72 83 52 101 110 7 44 98 127 52 20

130 102 46 43 51 92 73 107 55 123 120
117 61 143 144 42 49 61 63 88 13 47
131 7 23 25 36 79 86 9 84 5 119
94 32 135 48 23 31 138 44 107 9 36
16 53 120 26 108 133 21 3 119 67 62
78 93 30 131 104 142 77 40 49 29 40

132 80 68 64 103 128 2 102 85 78 142
116 50 24 19 19 130 117 121 24 53 128

28 105 57 60 1 29 105 50 51 103 100
99 13 130 126 76 109 6 125 102 35 91
34 1 92 132 82 106 95 54 63 48 53
14 130 50 129 25 94 52 87 123 76 6
41 131 22 53 64 53 23 66 57 134 65
52 8 100 82 50 71 93 73 52 50 57

102 25 17 111 118 77 113 92 77 83 77
106 23 41 125 33 47 17 83 50 110 107

5 106 72 20 3 42 111 43 71 38 19
66 126 61 114 101 17 140 19 72 87 116
59 88 115 30 75 118 132 117 104 86 74

2 46 118 68 99 97 85 57 131 133 137
35 47 83 28 59 122 69 115 29 95 42
15 129 106 67 22 107 130 46 103 22 30
19 121 44 110 98 45 34 103 106 141 123
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Roginski MFML Section 7:  n = 1 thru 72, k = 34 thru 45 with 0.0593mapρ = . 
Color Marksman Pol Prob Com Vul Ag Vul Gun Marksman Ag Marksman Gun Num Civ Num SWAT Attr in Orders Attr in Ag Eff Bomb

47 9 37 118 140 18 82 14 101 35 95 116
9 99 68 69 80 57 128 7 143 129 23 122

61 75 72 141 131 101 108 73 27 39 119 143
127 133 84 110 97 129 112 84 122 83 65 30
141 101 22 108 109 1 107 31 4 86 53 13

13 129 141 46 118 21 7 39 43 41 69 5
56 14 82 99 126 116 113 21 125 66 4 83

124 58 75 119 107 60 141 87 95 79 90 130
62 15 98 112 89 73 137 76 133 117 111 99
35 108 131 102 59 77 130 47 100 95 52 127

114 130 92 43 108 131 139 83 39 43 139 95
57 40 114 134 7 31 89 123 1 12 138 87
97 66 130 16 106 44 28 29 88 107 134 34

4 68 25 138 52 36 54 82 32 25 105 32
73 121 58 15 67 78 96 125 41 93 121 18
22 13 17 96 34 94 115 91 129 29 39 49
11 116 117 33 99 90 80 52 66 143 141 66
69 50 78 82 24 127 97 13 130 68 26 39
7 74 107 55 21 48 61 38 55 77 88 15

94 22 133 131 53 132 11 9 115 51 55 59
2 81 32 58 136 45 36 143 142 3 46 88

52 71 46 30 35 65 40 112 70 94 125 138
105 117 40 39 46 5 100 26 53 70 129 109
144 140 11 123 36 125 35 103 25 84 44 73
132 57 99 133 62 40 26 132 121 124 102 129

74 84 61 109 83 16 19 108 79 5 122 132
25 12 63 70 17 54 136 64 85 142 135 6
80 34 24 3 65 123 98 81 29 27 107 52
10 37 143 72 71 20 81 95 48 99 99 70
86 88 106 113 105 139 29 50 16 60 104 58
67 26 15 75 95 111 111 115 77 14 1 117
26 109 50 85 122 26 76 43 126 111 82 102

119 52 67 63 22 141 73 77 114 119 137 78
96 48 73 7 13 22 32 92 141 109 84 94

109 72 132 13 128 37 56 27 14 105 36 41
55 29 83 127 29 104 60 6 109 37 110 125
33 25 62 38 40 64 103 128 76 69 50 62
6 76 124 11 129 83 102 35 63 33 33 53

75 6 129 106 63 34 2 133 120 31 24 112
122 61 26 10 45 19 22 138 82 52 7 44

43 118 104 98 111 23 42 23 73 10 41 96
99 67 59 18 120 39 74 79 144 103 127 75

118 80 41 86 132 76 52 106 124 1 117 31
111 45 34 143 26 25 6 66 20 90 63 90

81 8 45 107 9 53 134 130 47 104 59 63
30 73 140 5 77 102 109 144 92 15 103 79
66 28 116 91 124 144 12 134 10 125 115 144

120 16 69 87 138 41 138 93 56 139 32 85
65 131 33 93 103 100 23 63 57 44 108 119

134 39 14 21 96 69 67 4 74 67 133 29
98 114 81 19 74 71 94 10 36 49 136 140
42 63 7 92 139 62 17 122 61 121 126 131
51 83 1 135 86 42 33 102 19 131 22 100
19 106 52 117 56 35 15 40 58 108 2 45

110 65 108 140 68 96 24 62 12 135 86 118
91 132 4 48 93 81 27 124 127 89 124 71
46 69 96 9 5 12 91 45 51 96 81 36
41 20 79 124 8 47 75 60 50 45 98 105

104 60 42 31 19 143 1 118 96 101 42 86
82 36 2 54 54 136 58 20 21 81 66 133
18 96 10 34 44 66 34 11 78 130 61 14
20 92 144 68 115 50 10 97 72 133 106 101

101 126 57 24 90 113 127 121 17 134 20 10
71 143 64 76 14 105 5 111 87 141 78 2

8 119 21 47 137 38 114 110 128 55 75 137
87 135 139 35 58 51 14 127 136 54 76 27

102 56 142 20 49 74 53 70 34 30 58 26
130 144 54 56 33 32 132 69 140 74 17 134

93 139 30 132 73 140 116 131 83 80 13 3
48 138 31 121 78 89 119 65 112 16 97 97
29 124 44 51 15 15 106 119 105 127 62 68

115 43 94 37 23 56 133 142 42 47 101 107
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Roginski MFML Section 8:  n = 73 thru 144, k = 34 thru 45 with 0.0593mapρ = . 

 

Color Marksman Pol Prob Com Vul Ag Vul Gun Marksman Ag Marksman Gun Num Civ Num SWAT Attr in Orders Attr in Ag Eff Bomb
32 111 29 74 55 68 3 74 38 123 29 115
92 128 39 114 119 122 101 107 40 122 19 139

126 21 103 89 72 10 13 24 52 38 11 21
59 113 55 52 60 95 104 8 11 72 15 89
12 97 137 61 4 85 142 104 33 87 6 50
37 5 70 60 25 33 71 139 91 126 123 47
28 122 5 4 88 97 37 15 118 113 43 69
45 11 23 8 114 121 48 98 67 8 120 55

103 62 101 120 123 112 18 22 119 132 18 20
21 93 125 64 141 52 59 126 15 63 93 61

3 105 71 111 57 88 131 117 108 73 118 56
113 78 123 49 39 99 70 86 60 65 25 37

5 7 48 62 37 107 120 90 5 88 14 111
63 38 36 122 47 108 62 100 132 102 73 33

136 87 128 53 113 27 64 137 59 20 34 74
79 94 9 42 101 80 122 129 69 21 47 54

138 82 113 128 1 7 126 17 139 57 128 82
100 10 38 29 82 124 50 49 18 4 132 28
139 136 95 103 69 115 38 88 86 71 74 12
107 24 102 137 31 61 69 2 30 78 109 7
131 54 121 44 84 4 143 94 131 76 28 110
76 142 118 50 70 14 41 67 54 114 57 93
16 2 60 6 42 43 44 101 7 98 56 84

106 53 43 22 30 29 84 34 104 50 3 114
24 137 93 144 38 98 51 48 110 13 89 16

116 59 90 142 75 55 57 89 23 137 144 104
137 1 134 83 112 2 43 75 80 19 60 92
128 49 109 79 117 70 30 3 35 140 51 72
53 44 65 129 130 120 93 141 3 82 31 25
77 115 87 66 2 110 65 99 9 11 9 48
83 41 119 57 125 119 85 53 138 40 8 51
72 30 89 1 43 135 31 96 137 2 77 142
68 77 13 77 79 117 4 19 81 9 114 67
90 32 127 126 87 82 49 140 116 118 83 57
40 107 135 88 27 92 68 51 106 7 112 22
15 125 138 45 32 126 8 136 98 116 45 124
44 47 47 130 104 46 125 68 107 18 64 17

123 91 8 105 85 106 90 109 31 46 12 23
54 104 136 90 100 137 118 58 62 23 143 77
23 35 16 25 110 59 87 56 68 112 130 42
85 134 100 139 98 30 77 135 22 22 30 24
64 19 66 104 135 63 55 25 103 136 21 128
50 70 126 65 133 134 135 33 99 138 79 43
60 31 122 115 76 128 95 78 94 120 80 8

125 110 110 12 66 84 39 105 113 62 67 60
34 120 49 26 11 103 140 30 8 128 131 120
31 112 111 78 41 142 99 18 45 42 68 136

108 46 112 23 18 6 124 55 28 59 5 91
140 23 105 2 142 130 79 71 89 144 92 40
95 27 27 101 51 86 117 32 75 91 140 11

1 85 53 136 10 93 9 46 71 53 48 121
27 90 88 71 143 11 78 42 24 17 100 4
49 100 97 40 127 58 45 28 90 92 91 81

117 102 18 81 116 114 16 5 65 58 40 123
129 89 12 100 3 75 105 1 134 100 96 46
84 79 3 14 121 3 72 61 13 97 70 80
38 51 80 36 61 138 21 57 117 6 49 65

121 55 91 27 94 109 88 44 37 110 35 64
89 17 6 97 91 8 47 116 93 56 116 9

143 123 51 73 81 24 144 85 44 75 87 106
36 18 20 80 64 49 25 120 84 115 85 19
17 86 115 125 92 67 123 54 111 106 38 108
39 4 76 67 16 91 63 59 2 64 27 103
14 64 74 116 134 9 129 41 26 36 16 35

133 33 85 28 12 118 66 12 46 24 54 141
70 95 28 84 6 72 83 36 97 48 113 1

112 42 86 59 48 79 110 113 135 85 10 76
78 3 35 17 144 133 86 80 64 34 72 98

142 141 56 95 28 28 46 72 123 61 94 113
135 127 120 94 50 87 121 114 6 26 142 126
88 103 19 41 102 17 92 37 102 28 71 38
58 98 77 32 20 13 20 16 49 32 37 135
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APPENDIX D. MAJOR BAEZ’S MFML DESIGN 

MFML Design for Major Baez:  n = 96, k = 20 with 0.0471mapρ = . 
var1 var2 var3 var4 var5 var6 var7 var8 var9 var10 var11 var12 var13 var14 var15 var16 var17 var18 var19 var20

n1 1 1 1 1 1 1 1 10 8 13 6 16 8 15 16 14 3 12 2 13
n2 1 1 1 1 1 0 2 13 12 4 8 13 15 3 4 9 4 3 3 4
n3 1 1 1 1 0 1 3 7 6 12 1 2 11 4 5 11 5 16 4 3
n4 1 1 1 1 0 0 1 9 16 6 4 12 5 8 14 5 6 10 15 2
n5 1 1 1 0 1 1 2 11 10 8 5 15 1 7 2 15 16 7 9 9
n6 1 1 1 0 1 0 3 14 4 1 10 3 7 12 6 16 7 11 14 12
n7 1 1 1 0 0 1 1 6 9 14 16 11 3 9 1 3 8 15 6 7
n8 1 1 1 0 0 0 2 1 13 16 7 5 10 5 7 12 9 1 10 16
n9 1 1 0 1 1 1 3 12 7 10 2 1 2 13 12 1 13 4 5 8
n10 1 1 0 1 1 0 1 16 14 11 13 6 12 2 13 6 11 14 13 14
n11 1 1 0 1 0 1 2 2 3 5 3 14 16 10 8 4 15 13 12 11
n12 1 1 0 1 0 0 3 3 2 9 11 9 4 6 11 10 1 5 16 6
n13 1 1 0 0 1 1 1 15 1 15 12 10 14 11 9 7 10 2 11 5
n14 1 1 0 0 1 0 2 5 5 2 14 8 6 1 15 8 12 8 1 10
n15 1 1 0 0 0 1 3 4 15 7 15 4 13 16 10 13 14 9 8 1
n16 1 1 0 0 0 0 1 8 11 3 9 7 9 14 3 2 2 6 7 15
n17 1 0 1 1 1 1 2 10 8 13 6 16 8 15 16 14 3 12 2 13
n18 1 0 1 1 1 0 3 13 12 4 8 13 15 3 4 9 4 3 3 4
n19 1 0 1 1 0 1 1 7 6 12 1 2 11 4 5 11 5 16 4 3
n20 1 0 1 1 0 0 2 9 16 6 4 12 5 8 14 5 6 10 15 2
n21 1 0 1 0 1 1 3 11 10 8 5 15 1 7 2 15 16 7 9 9
n22 1 0 1 0 1 0 1 14 4 1 10 3 7 12 6 16 7 11 14 12
n23 1 0 1 0 0 1 2 6 9 14 16 11 3 9 1 3 8 15 6 7
n24 1 0 1 0 0 0 3 1 13 16 7 5 10 5 7 12 9 1 10 16
n25 1 0 0 1 1 1 1 12 7 10 2 1 2 13 12 1 13 4 5 8
n26 1 0 0 1 1 0 2 16 14 11 13 6 12 2 13 6 11 14 13 14
n27 1 0 0 1 0 1 3 2 3 5 3 14 16 10 8 4 15 13 12 11
n28 1 0 0 1 0 0 1 3 2 9 11 9 4 6 11 10 1 5 16 6
n29 1 0 0 0 1 1 2 15 1 15 12 10 14 11 9 7 10 2 11 5
n30 1 0 0 0 1 0 3 5 5 2 14 8 6 1 15 8 12 8 1 10
n31 1 0 0 0 0 1 1 4 15 7 15 4 13 16 10 13 14 9 8 1
n32 1 0 0 0 0 0 2 8 11 3 9 7 9 14 3 2 2 6 7 15
n33 2 1 1 1 1 1 3 10 8 13 6 16 8 15 16 14 3 12 2 13
n34 2 1 1 1 1 0 1 13 12 4 8 13 15 3 4 9 4 3 3 4
n35 2 1 1 1 0 1 2 7 6 12 1 2 11 4 5 11 5 16 4 3
n36 2 1 1 1 0 0 3 9 16 6 4 12 5 8 14 5 6 10 15 2
n37 2 1 1 0 1 1 1 11 10 8 5 15 1 7 2 15 16 7 9 9
n38 2 1 1 0 1 0 2 14 4 1 10 3 7 12 6 16 7 11 14 12
n39 2 1 1 0 0 1 3 6 9 14 16 11 3 9 1 3 8 15 6 7
n40 2 1 1 0 0 0 1 1 13 16 7 5 10 5 7 12 9 1 10 16
n41 2 1 0 1 1 1 2 12 7 10 2 1 2 13 12 1 13 4 5 8
n42 2 1 0 1 1 0 3 16 14 11 13 6 12 2 13 6 11 14 13 14
n43 2 1 0 1 0 1 1 2 3 5 3 14 16 10 8 4 15 13 12 11
n44 2 1 0 1 0 0 2 3 2 9 11 9 4 6 11 10 1 5 16 6
n45 2 1 0 0 1 1 3 15 1 15 12 10 14 11 9 7 10 2 11 5
n46 2 1 0 0 1 0 1 5 5 2 14 8 6 1 15 8 12 8 1 10
n47 2 1 0 0 0 1 2 4 15 7 15 4 13 16 10 13 14 9 8 1
n48 2 1 0 0 0 0 3 8 11 3 9 7 9 14 3 2 2 6 7 15
n49 2 0 1 1 1 1 1 10 8 13 6 16 8 15 16 14 3 12 2 13
n50 2 0 1 1 1 0 2 13 12 4 8 13 15 3 4 9 4 3 3 4
n51 2 0 1 1 0 1 3 7 6 12 1 2 11 4 5 11 5 16 4 3
n52 2 0 1 1 0 0 1 9 16 6 4 12 5 8 14 5 6 10 15 2
n53 2 0 1 0 1 1 2 11 10 8 5 15 1 7 2 15 16 7 9 9
n54 2 0 1 0 1 0 3 14 4 1 10 3 7 12 6 16 7 11 14 12
n55 2 0 1 0 0 1 1 6 9 14 16 11 3 9 1 3 8 15 6 7
n56 2 0 1 0 0 0 2 1 13 16 7 5 10 5 7 12 9 1 10 16
n57 2 0 0 1 1 1 3 12 7 10 2 1 2 13 12 1 13 4 5 8
n58 2 0 0 1 1 0 1 16 14 11 13 6 12 2 13 6 11 14 13 14
n59 2 0 0 1 0 1 2 2 3 5 3 14 16 10 8 4 15 13 12 11
n60 2 0 0 1 0 0 3 3 2 9 11 9 4 6 11 10 1 5 16 6
n61 2 0 0 0 1 1 1 15 1 15 12 10 14 11 9 7 10 2 11 5
n62 2 0 0 0 1 0 2 5 5 2 14 8 6 1 15 8 12 8 1 10
n63 2 0 0 0 0 1 3 4 15 7 15 4 13 16 10 13 14 9 8 1
n64 2 0 0 0 0 0 1 8 11 3 9 7 9 14 3 2 2 6 7 15
n65 3 1 1 1 1 1 2 10 8 13 6 16 8 15 16 14 3 12 2 13
n66 3 1 1 1 1 0 3 13 12 4 8 13 15 3 4 9 4 3 3 4
n67 3 1 1 1 0 1 1 7 6 12 1 2 11 4 5 11 5 16 4 3
n68 3 1 1 1 0 0 2 9 16 6 4 12 5 8 14 5 6 10 15 2
n69 3 1 1 0 1 1 3 11 10 8 5 15 1 7 2 15 16 7 9 9
n70 3 1 1 0 1 0 1 14 4 1 10 3 7 12 6 16 7 11 14 12
n71 3 1 1 0 0 1 2 6 9 14 16 11 3 9 1 3 8 15 6 7
n72 3 1 1 0 0 0 3 1 13 16 7 5 10 5 7 12 9 1 10 16
n73 3 1 0 1 1 1 1 12 7 10 2 1 2 13 12 1 13 4 5 8
n74 3 1 0 1 1 0 2 16 14 11 13 6 12 2 13 6 11 14 13 14
n75 3 1 0 1 0 1 3 2 3 5 3 14 16 10 8 4 15 13 12 11
n76 3 1 0 1 0 0 1 3 2 9 11 9 4 6 11 10 1 5 16 6
n77 3 1 0 0 1 1 2 15 1 15 12 10 14 11 9 7 10 2 11 5
n78 3 1 0 0 1 0 3 5 5 2 14 8 6 1 15 8 12 8 1 10
n79 3 1 0 0 0 1 1 4 15 7 15 4 13 16 10 13 14 9 8 1
n80 3 1 0 0 0 0 2 8 11 3 9 7 9 14 3 2 2 6 7 15
n81 3 0 1 1 1 1 3 10 8 13 6 16 8 15 16 14 3 12 2 13
n82 3 0 1 1 1 0 1 13 12 4 8 13 15 3 4 9 4 3 3 4
n83 3 0 1 1 0 1 2 7 6 12 1 2 11 4 5 11 5 16 4 3
n84 3 0 1 1 0 0 3 9 16 6 4 12 5 8 14 5 6 10 15 2
n85 3 0 1 0 1 1 1 11 10 8 5 15 1 7 2 15 16 7 9 9
n86 3 0 1 0 1 0 2 14 4 1 10 3 7 12 6 16 7 11 14 12
n87 3 0 1 0 0 1 3 6 9 14 16 11 3 9 1 3 8 15 6 7
n88 3 0 1 0 0 0 1 1 13 16 7 5 10 5 7 12 9 1 10 16
n89 3 0 0 1 1 1 2 12 7 10 2 1 2 13 12 1 13 4 5 8
n90 3 0 0 1 1 0 3 16 14 11 13 6 12 2 13 6 11 14 13 14
n91 3 0 0 1 0 1 1 2 3 5 3 14 16 10 8 4 15 13 12 11
n92 3 0 0 1 0 0 2 3 2 9 11 9 4 6 11 10 1 5 16 6
n93 3 0 0 0 1 1 3 15 1 15 12 10 14 11 9 7 10 2 11 5
n94 3 0 0 0 1 0 1 5 5 2 14 8 6 1 15 8 12 8 1 10
n95 3 0 0 0 0 1 2 4 15 7 15 4 13 16 10 13 14 9 8 1
n96 3 0 0 0 0 0 3 8 11 3 9 7 9 14 3 2 2 6 7 15  
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APPENDIX E. A min
mapρ  PREDICTIVE MODEL WITH  

QUADRATIC TERMS 

The final multiple linear regression model to predict min
mapρ  for a given n and k is a 

relatively simple expression: 

( )min 2/3 1/3 2/3 1/30.0873 7.859 0.109 11.702
E

map n k n kρ − − − −= + − − . 

It is very tractable in its representation of n and k.  We see that as n increases and k 

remains constant the first term is dominant in the expression and the mean maximum 

absolute pairwise correlation decreases, as Owen (1994) theorized.  However, when k 

also grows large min
mapρ  reduces less quickly because of the values in the second term.  

These results are reasonable since an increase in k increases the number of columns, 

thereby creating more possibility of a new column permutation that may have high 

correlation with one of the other columns. 

Analysis of this model shows that it is adequate for predicting the best min
mapρ  from 

G200 trials, given n and k.  Statistics for the residuals indicate that the model is 

acceptable for its ability to predict.  The range of residuals, in comparison with the 

magnitude of the predicted values, is relatively small. 

Figure 15 displays curvature, suggesting that inclusion of quadratic terms may 

provide an improvement. 
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 Residuals vs. min
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Figure 15.   The plot for the residuals resulting from a G200 MLR shows curvature that 
indicates a need to include more complex terms in the regression model. 

We explore the impact of adding more complex terms in the equation to help the 

model’s performance.  We extend the model from Chapter II to include quadratic terms 

for transformed n and transformed k.  The result is the following eight-term equation with 

an 2 0.9996R = .  

( )min 1/3 2/3 2/3 4/3

1/3 2/3 1/3 4/3 2/3 2/3 2/3 4/3

0.03054 0.03208* 0.100806*  13.06842* - 68.38078*

               30.12779* 254.8917* 17.93109* 254.8391*

E

map k k n n

k n k n k n k n

ρ − − − −

− − − − − − − −

= + − +

− + + −
 

 The residual plot (Figure 16) for this new model continues to show curvature, but 

the sizes of the residuals are a full order of magnitude less that those from the more 

simple equation.   
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Figure 16.   The residual plot for the new multiple linear regression model with quadratic 
terms still show curvature, but the sizes of the residuals are much smaller 
than from previous models. 

The trade-off with this more precise formula is an increase in difficulty in 

explaining the impacts of n and k, as well as a reduction in the ease in which an 

experimenter can use it.  Although the residual analysis of this multiple linear regression 

model reveals that there is some curvature in the relationship, the amount of error in the 

predicted values is relatively small.  Since the majority of experimenters would use this 

formula mostly as a guide to find the appropriate design dimensions and not min
mapρ  itself, 

the simpler model serves our purposes. 
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